6,981 research outputs found

    Enhancing Word Embeddings with Knowledge Extracted from Lexical Resources

    Get PDF
    In this work, we present an effective method for semantic specialization of word vector representations. To this end, we use traditional word embeddings and apply specialization methods to better capture semantic relations between words. In our approach, we leverage external knowledge from rich lexical resources such as BabelNet. We also show that our proposed post-specialization method based on an adversarial neural network with the Wasserstein distance allows to gain improvements over state-of-the-art methods on two tasks: word similarity and dialog state tracking.Comment: Accepted to ACL 2020 SR

    Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization

    Get PDF
    Semantic specialization is the process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with an adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.Comment: Accepted at EMNLP 201

    Using Sparse Semantic Embeddings Learned from Multimodal Text and Image Data to Model Human Conceptual Knowledge

    Get PDF
    Distributional models provide a convenient way to model semantics using dense embedding spaces derived from unsupervised learning algorithms. However, the dimensions of dense embedding spaces are not designed to resemble human semantic knowledge. Moreover, embeddings are often built from a single source of information (typically text data), even though neurocognitive research suggests that semantics is deeply linked to both language and perception. In this paper, we combine multimodal information from both text and image-based representations derived from state-of-the-art distributional models to produce sparse, interpretable vectors using Joint Non-Negative Sparse Embedding. Through in-depth analyses comparing these sparse models to human-derived behavioural and neuroimaging data, we demonstrate their ability to predict interpretable linguistic descriptions of human ground-truth semantic knowledge.Comment: Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 260-270. Brussels, Belgium, October 31 - November 1, 2018. Association for Computational Linguistic

    Cross-Lingual Induction and Transfer of Verb Classes Based on Word Vector Space Specialisation

    Full text link
    Existing approaches to automatic VerbNet-style verb classification are heavily dependent on feature engineering and therefore limited to languages with mature NLP pipelines. In this work, we propose a novel cross-lingual transfer method for inducing VerbNets for multiple languages. To the best of our knowledge, this is the first study which demonstrates how the architectures for learning word embeddings can be applied to this challenging syntactic-semantic task. Our method uses cross-lingual translation pairs to tie each of the six target languages into a bilingual vector space with English, jointly specialising the representations to encode the relational information from English VerbNet. A standard clustering algorithm is then run on top of the VerbNet-specialised representations, using vector dimensions as features for learning verb classes. Our results show that the proposed cross-lingual transfer approach sets new state-of-the-art verb classification performance across all six target languages explored in this work.Comment: EMNLP 2017 (long paper

    Reevaluating Adversarial Examples in Natural Language

    Full text link
    State-of-the-art attacks on NLP models lack a shared definition of a what constitutes a successful attack. We distill ideas from past work into a unified framework: a successful natural language adversarial example is a perturbation that fools the model and follows some linguistic constraints. We then analyze the outputs of two state-of-the-art synonym substitution attacks. We find that their perturbations often do not preserve semantics, and 38% introduce grammatical errors. Human surveys reveal that to successfully preserve semantics, we need to significantly increase the minimum cosine similarities between the embeddings of swapped words and between the sentence encodings of original and perturbed sentences.With constraints adjusted to better preserve semantics and grammaticality, the attack success rate drops by over 70 percentage points.Comment: 15 pages; 9 Tables; 5 Figure
    • …
    corecore