9 research outputs found

    Online and Offline Algorithms for Circuit Switch Scheduling

    Get PDF
    Motivated by the use of high speed circuit switches in large scale data centers, we consider the problem of circuit switch scheduling. In this problem we are given demands between pairs of servers and the goal is to schedule at every time step a matching between the servers while maximizing the total satisfied demand over time. The crux of this scheduling problem is that once one shifts from one matching to a different one a fixed delay delta is incurred during which no data can be transmitted. For the offline version of the problem we present a (1-(1/e)-epsilon) approximation ratio (for any constant epsilon >0). Since the natural linear programming relaxation for the problem has an unbounded integrality gap, we adopt a hybrid approach that combines the combinatorial greedy with randomized rounding of a different suitable linear program. For the online version of the problem we present a (bi-criteria) ((e-1)/(2e-1)-epsilon)-competitive ratio (for any constant epsilon >0 ) that exceeds time by an additive factor of O(delta/epsilon). We note that no uni-criteria online algorithm is possible. Surprisingly, we obtain the result by reducing the online version to the offline one

    Costly circuits, submodular schedules and approximate Carathéodory Theorems

    No full text
    Hybrid switching—in which a high bandwidth circuit switch (optical or wireless) is used in conjunction with a low bandwidth packet switch—is a promising alternative to interconnect servers in today’s large-scale data centers. Circuit switches offer a very high link rate, but incur a non-trivial reconfiguration delay which makes their scheduling challenging. In this paper, we demonstrate a lightweight, simple and nearly optimal scheduling algorithm that trades off reconfiguration costs with the benefits of reconfiguration that match the traffic demands. Seen alternatively, the algorithm provides a fast and approximate solution toward a constructive version of Carathéodory’s Theorem for the Birkhoff polytope. The algorithm also has strong connections to submodular optimization, achieves a performance at least half that of the optimal schedule and strictly outperforms the state of the art in a variety of traffic demand settings. These ideas naturally generalize: we see that indirect routing leads to exponential connectivity; this is another phenomenon of the power of multi-hop routing, distinct from the well-known load balancing effects. Keywords: Data center networks, Bridges and switches, Circuit networks, Network flows, Submodular optimization, Approximation algorithmsNational Science Foundation (U.S.) (Grant CCF-1409106)National Science Foundation (U.S.) (Grant NeTS-1718270)United States. Army (Grant W911NF-14-1-0220

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore