1,273 research outputs found

    Heterogeneous Cross-Project Defect Prediction using Encoder and Transfer Learning

    Get PDF
    Heterogeneous cross-project defect prediction (HCPDP) aims to predict defects in new software projects using defect data from previous software projects where the source and target projects have some different metrics. Most existing methods only find linear relationships in the software defect features and datasets. Additionally, these methods use multiple defect datasets from different projects as source datasets. In this paper, we propose a novel method called heterogeneous cross-project defect prediction using encoder and transfer learning (ETL). ETL uses encoders to extract the important features from source and target datasets. Also, to minimize negative transfer during transfer learning, we used an augmented dataset that contains pseudo-labels and the source dataset. Additionally, we have used very limited data to train the model. To evaluate the performance of the ETL approach, 16 datasets from four publicly available software defect projects were used. Furthermore, we compared the proposed method with four HCPDP methods namely EGW, HDP&amp;#x005F;KS, CTKCCA and EMKCA, and one WPDP method from existing literature. The proposed method on average outperforms the baseline methods in terms of PD, PF, F1-score, G-mean and AUC.</p

    High-performance and hardware-aware computing: proceedings of the second International Workshop on New Frontiers in High-performance and Hardware-aware Computing (HipHaC\u2711), San Antonio, Texas, USA, February 2011 ; (in conjunction with HPCA-17)

    Get PDF
    High-performance system architectures are increasingly exploiting heterogeneity. The HipHaC workshop aims at combining new aspects of parallel, heterogeneous, and reconfigurable microprocessor technologies with concepts of high-performance computing and, particularly, numerical solution methods. Compute- and memory-intensive applications can only benefit from the full hardware potential if all features on all levels are taken into account in a holistic approach

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF
    corecore