5,915 research outputs found

    Harvesting Data from Advanced Technologies

    Get PDF
    Data streams are emerging everywhere such as Web logs, Web page click streams, sensor data streams, and credit card transaction flows. Different from traditional data sets, data streams are sequentially generated and arrive one by one rather than being available for random access before learning begins, and they are potentially huge or even infinite that it is impractical to store the whole data. To study learning from data streams, we target online learning, which generates a best–so far model on the fly by sequentially feeding in the newly arrived data, updates the model as needed, and then applies the learned model for accurate real-time prediction or classification in real-world applications. Several challenges arise from this scenario: first, data is not available for random access or even multiple access; second, data imbalance is a common situation; third, the performance of the model should be reasonable even when the amount of data is limited; fourth, the model should be updated easily but not frequently; and finally, the model should always be ready for prediction and classification. To meet these challenges, we investigate streaming feature selection by taking advantage of mutual information and group structures among candidate features. Streaming feature selection reduces the number of features by removing noisy, irrelevant, or redundant features and selecting relevant features on the fly, and brings about palpable effects for applications: speeding up the learning process, improving learning accuracy, enhancing generalization capability, and improving model interpretation. Compared with traditional feature selection, which can only handle pre-given data sets without considering the potential group structures among candidate features, streaming feature selection is able to handle streaming data and select meaningful and valuable feature sets with or without group structures on the fly. In this research, we propose 1) a novel streaming feature selection algorithm (GFSSF, Group Feature Selection with Streaming Features) by exploring mutual information and group structures among candidate features for both group and individual levels of feature selection from streaming data, 2) a lazy online prediction model with data fusion, feature selection and weighting technologies for real-time traffic prediction from heterogeneous sensor data streams, 3) a lazy online learning model (LB, Live Bayes) with dynamic resampling technology to learn from imbalanced embedded mobile sensor data streams for real-time activity recognition and user recognition, and 4) a lazy update online learning model (CMLR, Cost-sensitive Multinomial Logistic Regression) with streaming feature selection for accurate real-time classification from imbalanced and small sensor data streams. Finally, by integrating traffic flow theory, advanced sensors, data gathering, data fusion, feature selection and weighting, online learning and visualization technologies to estimate and visualize the current and future traffic, a real-time transportation prediction system named VTraffic is built for the Vermont Agency of Transportation

    Hellinger Distance Trees for Imbalanced Streams

    Get PDF
    Classifiers trained on data sets possessing an imbalanced class distribution are known to exhibit poor generalisation performance. This is known as the imbalanced learning problem. The problem becomes particularly acute when we consider incremental classifiers operating on imbalanced data streams, especially when the learning objective is rare class identification. As accuracy may provide a misleading impression of performance on imbalanced data, existing stream classifiers based on accuracy can suffer poor minority class performance on imbalanced streams, with the result being low minority class recall rates. In this paper we address this deficiency by proposing the use of the Hellinger distance measure, as a very fast decision tree split criterion. We demonstrate that by using Hellinger a statistically significant improvement in recall rates on imbalanced data streams can be achieved, with an acceptable increase in the false positive rate.Comment: 6 Pages, 2 figures, to be published in Proceedings 22nd International Conference on Pattern Recognition (ICPR) 201

    CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification

    Full text link
    Class imbalance classification is a challenging research problem in data mining and machine learning, as most of the real-life datasets are often imbalanced in nature. Existing learning algorithms maximise the classification accuracy by correctly classifying the majority class, but misclassify the minority class. However, the minority class instances are representing the concept with greater interest than the majority class instances in real-life applications. Recently, several techniques based on sampling methods (under-sampling of the majority class and over-sampling the minority class), cost-sensitive learning methods, and ensemble learning have been used in the literature for classifying imbalanced datasets. In this paper, we introduce a new clustering-based under-sampling approach with boosting (AdaBoost) algorithm, called CUSBoost, for effective imbalanced classification. The proposed algorithm provides an alternative to RUSBoost (random under-sampling with AdaBoost) and SMOTEBoost (synthetic minority over-sampling with AdaBoost) algorithms. We evaluated the performance of CUSBoost algorithm with the state-of-the-art methods based on ensemble learning like AdaBoost, RUSBoost, SMOTEBoost on 13 imbalance binary and multi-class datasets with various imbalance ratios. The experimental results show that the CUSBoost is a promising and effective approach for dealing with highly imbalanced datasets.Comment: CSITSS-201

    Complex graph stream mining

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Recent years have witnessed a dramatic increase of information due to the ever development of modern technologies. The large scale of information makes data analysis, particularly data mining and knowledge discovery tasks, unprecedentedly challenging. First, data is becoming more and more interconnected. In a variety of domains such as social networks, chemical compounds, and XML documents, data is no longer represented by a flat table with instance-feature format, but exhibits complex structures indicating dependency relationships. Second, data is evolving more and more dynamically. Emerging applications such as social networks continuously generate information over time. Third, the learning tasks in many real-life applications become more and more complicated in that there are various constraints on the number of labelled data, class distributions, misclassification costs, or the number of learning tasks etc. Considering the above challenges, this research aims to investigate theoretical foundations, study new algorithm designs and system frameworks to enable the mining of complex graph streams from three aspects, including (1) Correlated Graph Stream Mining, (2) Graph Stream Classifications, and (3) Complex Task Graph Classification. In particular, correlated graph stream mining intends to carry out structured pattern search and support the query of similar graphs from a graph stream. Due to the dynamic changing nature of the streaming data and the inherent complexity of the graph query process, treating graph streams as static datasets is computationally infeasible or ineffective. Therefore, we proposed a novel algorithm, CGStream, to identify correlated graphs from a data stream, by using a sliding window, which covers a number of consecutive batches of stream data records. Experimental results demonstrate that the proposed algorithm is several times, or even an order of magnitude, more efficient than the straightforward algorithms. Graph stream classification aims to build effective and efficient classification models for graph streams with continuous growing volumes and dynamic changes. We proposed two methods for complex graph stream classification. Due to the inherent complexity of graph structure, labelling graph data is very expensive. To solve this problem, we proposed a gLSU algorithm, which aims to select discriminative subgraph features with minimum redundancy by using both labelled and unlabelled graphs for graph streams. The second approach handles graph streams with imbalanced class distributions and noise. Both frameworks use an instance weighting scheme to capture the underlying concept drifts of graph streams and achieve significant performance gain on benchmark graph streams. Complex task graph classification aims to address the graph classification problems with complex constraints. We studied two complex task graph classification problems, cost-sensitive graph classification of large-scale graphs and multi-task graph classification. As in medical diagnosis the misclassification cost/risk for different classes is inherently different and large scale graph classification is highly demanded in real-life applications, we proposed a CogBoost algorithm for cost-sensitive classification of large scale graphs. To overcome the limitation of insufficient labelled graphs for a specific learning task, we further proposed effective algorithms to leverage multiple graph learning tasks to select subgraph features and regularize multiple tasks to achieve better generalization performance for all learning tasks
    • …
    corecore