279 research outputs found

    Mosquito detection with low-cost smartphones: data acquisition for malaria research

    Full text link
    Mosquitoes are a major vector for malaria, causing hundreds of thousands of deaths in the developing world each year. Not only is the prevention of mosquito bites of paramount importance to the reduction of malaria transmission cases, but understanding in more forensic detail the interplay between malaria, mosquito vectors, vegetation, standing water and human populations is crucial to the deployment of more effective interventions. Typically the presence and detection of malaria-vectoring mosquitoes is only quantified by hand-operated insect traps or signified by the diagnosis of malaria. If we are to gather timely, large-scale data to improve this situation, we need to automate the process of mosquito detection and classification as much as possible. In this paper, we present a candidate mobile sensing system that acts as both a portable early warning device and an automatic acoustic data acquisition pipeline to help fuel scientific inquiry and policy. The machine learning algorithm that powers the mobile system achieves excellent off-line multi-species detection performance while remaining computationally efficient. Further, we have conducted preliminary live mosquito detection tests using low-cost mobile phones and achieved promising results. The deployment of this system for field usage in Southeast Asia and Africa is planned in the near future. In order to accelerate processing of field recordings and labelling of collected data, we employ a citizen science platform in conjunction with automated methods, the former implemented using the Zooniverse platform, allowing crowdsourcing on a grand scale.Comment: Presented at NIPS 2017 Workshop on Machine Learning for the Developing Worl

    Leakage Detection Framework using Domain-Informed Neural Networks and Support Vector Machines to Augment Self-Healing in Water Distribution Networks

    Get PDF
    The reduction of water leakage is essential for ensuring sustainable and resilient water supply systems. Despite recent investments in sensing technologies, pipe leakage remains a significant challenge for the water sector, particularly in developed nations like the UK, which suffer from aging water infrastructure. Conventional models and analytical methods for detecting pipe leakage often face reliability issues and are generally limited to detecting leaks during nighttime hours. Moreover, leakages are frequently detected by the customers rather than the water companies. To achieve substantial reductions in leakage and enhance public confidence in water supply and management, adopting an intelligent detection method is crucial. Such a method should effectively leverage existing sensor data for reliable leakage identification across the network. This not only helps in minimizing water loss and the associated energy costs of water treatment but also aids in steering the water sector towards a more sustainable and resilient future. As a step towards ‘self-healing’ water infrastructure systems, this study presents a novel framework for rapidly identifying potential leakages at the district meter area (DMA) level. The framework involves training a domain-informed variational autoencoder (VAE) for real-time dimensionality reduction of water flow time series data and developing a two-dimensional surrogate latent variable (LV) mapping which sufficiently and efficiently captures the distinct characteristics of leakage and regular (non-leakage) flow. The domain-informed training employs a novel loss function that ensures a distinct but regulated LV space for the two classes of flow groupings (i.e., leakage and non-leakage). Subsquently, a binary SVM classifier is used to provide a hyperplane for separating the two classes of LVs corresponding to the flow groupings. Hence, the proposed framework can be efficiently utilised to classify the incoming flow as leakage or non-leakage based on the encoded surrogates LVs of the flow time series using the trained VAE encoder. The framework is trained and tested on a dataset of over 2000 DMAs in North Yorkshire, UK, containing water flow time series recorded at 15-minute intervals over one year. The framework performs exceptionally well for both regular and leakage water flow groupings with a classification accuracy of over 98 % on the unobserved test datase

    Advancing Land Cover Mapping in Remote Sensing with Deep Learning

    Get PDF
    Automatic mapping of land cover in remote sensing data plays an increasingly significant role in several earth observation (EO) applications, such as sustainable development, autonomous agriculture, and urban planning. Due to the complexity of the real ground surface and environment, accurate classification of land cover types is facing many challenges. This thesis provides novel deep learning-based solutions to land cover mapping challenges such as how to deal with intricate objects and imbalanced classes in multi-spectral and high-spatial resolution remote sensing data. The first work presents a novel model to learn richer multi-scale and global contextual representations in very high-resolution remote sensing images, namely the dense dilated convolutions' merging (DDCM) network. The proposed method is light-weighted, flexible and extendable, so that it can be used as a simple yet effective encoder and decoder module to address different classification and semantic mapping challenges. Intensive experiments on different benchmark remote sensing datasets demonstrate that the proposed method can achieve better performance but consume much fewer computation resources compared with other published methods. Next, a novel graph model is developed for capturing long-range pixel dependencies in remote sensing images to improve land cover mapping. One key component in the method is the self-constructing graph (SCG) module that can effectively construct global context relations (latent graph structure) without requiring prior knowledge graphs. The proposed SCG-based models achieved competitive performance on different representative remote sensing datasets with faster training and lower computational cost compared to strong baseline models. The third work introduces a new framework, namely the multi-view self-constructing graph (MSCG) network, to extend the vanilla SCG model to be able to capture multi-view context representations with rotation invariance to achieve improved segmentation performance. Meanwhile, a novel adaptive class weighting loss function is developed to alleviate the issue of class imbalance commonly found in EO datasets for semantic segmentation. Experiments on benchmark data demonstrate the proposed framework is computationally efficient and robust to produce improved segmentation results for imbalanced classes. To address the key challenges in multi-modal land cover mapping of remote sensing data, namely, 'what', 'how' and 'where' to effectively fuse multi-source features and to efficiently learn optimal joint representations of different modalities, the last work presents a compact and scalable multi-modal deep learning framework (MultiModNet) based on two novel modules: the pyramid attention fusion module and the gated fusion unit. The proposed MultiModNet outperforms the strong baselines on two representative remote sensing datasets with fewer parameters and at a lower computational cost. Extensive ablation studies also validate the effectiveness and flexibility of the framework

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    The role of deep learning in urban water management: A critical review

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordDeep learning techniques and algorithms are emerging as a disruptive technology with the potential to transform global economies, environments and societies. They have been applied to planning and management problems of urban water systems in general, however, there is lack of a systematic review of the current state of deep learning applications and an examination of potential directions where deep learning can contribute to solving urban water challenges. Here we provide such a review, covering water demand forecasting, leakage and contamination detection, sewer defect assessment, wastewater system state prediction, asset monitoring and urban flooding. We find that the application of deep learning techniques is still at an early stage as most studies used benchmark networks, synthetic data, laboratory or pilot systems to test the performance of deep learning methods with no practical adoption reported. Leakage detection is perhaps at the forefront of receiving practical implementation into day-to-day operation and management of urban water systems, compared with other problems reviewed. Five research challenges, i.e., data privacy, algorithmic development, explainability and trustworthiness, multi-agent systems and digital twins, are identified as key areas to advance the application and implementation of deep learning in urban water management. Future research and application of deep learning systems are expected to drive urban water systems towards high intelligence and autonomy. We hope this review will inspire research and development that can harness the power of deep learning to help achieve sustainable water management and digitalise the water sector across the world.Royal SocietyAlan Turing InstituteNational Natural Science Foundation of Chin
    • …
    corecore