28,361 research outputs found

    An Economic Model for Market Entry Strategies

    Get PDF
    In unpredictable software manufacturer organizations, it is difficult to determine when a software product will be released, the features the product will have, the associated development costs or the resulting product quality. The NPVI-method is presented, enabling a software manufacturer to compare and evaluate different release or market entry strategies. However, information has its price in time and cost, forcing decision-makers to make a trade-off between search costs and opportunity costs. In addition, decision-makers simplify the real world, as they cannot escape the diverse psychological forces that influence individual behaviour. Combined with the potential presence of sources of conflict, this often leads to the situation where different stakeholders experience difference aspiration levels. As such, satisficing behaviour where decision-makers try to find consensus and choose a satisfactory release alternative is a good characterisation of the software release decision-making process as found in practice. Successful adoption of the NPVI-method requires that software manufacturers reach the zone of cost effectiveness for the perfection of information; a zone where numbers make business sense, and can be convincingly used to support informed decision-making

    Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.

    Full text link

    Meeting the challenge of zero carbon homes : a multi-disciplinary review of the literature and assessment of key barriers and enablers

    Get PDF
    Within the built environment sector, there is an increasing pressure on professionals to consider the impact of development upon the environment. These pressures are rooted in sustainability, and particularly climate change. But what is meant by sustainability? It is a term whose meaning is often discussed, the most common definition taken from the Bruntland report as “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs” (World Commission on Environment and Development, 1987). In the built environment, the sustainability issues within the environment, social and economic spheres are often expressed through design considerations of energy, water and waste. Given the Stern Report’s economic and political case for action with respect to climate change (Stern, 2006) and the IPCC’s Fourth Assessment Report’s confirmation of the urgency of the climate change issue and it’s root causes (IPCC, 2007), the need for action to mitigate the effects of climate change is currently high on the political agenda. Excess in carbon dioxide concentrations over the natural level have been attributed to anthropogenic sources, most particularly the burning of carbon-based fossil fuels. Over 40% of Europe’s energy and 40% of Europe’s carbon dioxide emissions arise from use of energy in buildings. Energy use in buildings is primarily for space heating, water heating, lighting and appliance use. Professionals in the built environment can therefore play a significant role in meeting targets for mitigating the effects of climate change. The UK Government recently published the Code for Sustainable Homes (DCLG, 2006). Within this is the objective of development of zero carbon domestic new build dwellings by 2016. It is the domestic zero carbon homes agenda which is the focus of this report. The report is the culmination of a research project, funded by Northumbria University, and conducted from February 2008 to July 2008, involving researchers from the Sustainable Cities Research Institute (within the School of the Built Environment) and academics, also from within the School. The aim of the project was to examine, in a systematic and holistic way, the critical issues, drivers and barriers to building and adapting houses to meet zero carbon targets. The project involved a wide range of subject specialisms within the built environment and took a multi-disciplinary approach. Practitioner contribution was enabled through a workshop. The focus of this work was to review the academic literature on the built environment sector and its capabilities to meet zero carbon housing targets. It was not possible to undertake a detailed review of energy efficiency or micro-generation technologies, the focus of the research was instead in four focussed areas: policy, behaviour, supply chain and technology.What follows is the key findings of the review work undertaken. Chapter One presents the findings of the policy and regulation review. In Chapter Two the review of behavioural aspects of energy use in buildings is presented. Chapter Three presents the findings of the review of supply chain issues. Chapter Four presents the findings of the technology review, which focuses on phase change materials. A summary of the key barriers and enablers, and areas for future research work, concludes this report in Chapter Five. Research is always a work in progress, and therefore comments on this document are most welcome, as are offers of collaboration towards solutions. The School of the Built Environment at Northumbria University strives to embed its research in practical applications and solutions to the need for a low carbon economy

    Applications of aerospace technology in the electric power industry

    Get PDF
    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented

    Fault detection and correction modeling of software systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore