147,848 research outputs found

    Extracting Tree-structures in CT data by Tracking Multiple Statistically Ranked Hypotheses

    Full text link
    In this work, we adapt a method based on multiple hypothesis tracking (MHT) that has been shown to give state-of-the-art vessel segmentation results in interactive settings, for the purpose of extracting trees. Regularly spaced tubular templates are fit to image data forming local hypotheses. These local hypotheses are used to construct the MHT tree, which is then traversed to make segmentation decisions. However, some critical parameters in this method are scale-dependent and have an adverse effect when tracking structures of varying dimensions. We propose to use statistical ranking of local hypotheses in constructing the MHT tree, which yields a probabilistic interpretation of scores across scales and helps alleviate the scale-dependence of MHT parameters. This enables our method to track trees starting from a single seed point. Our method is evaluated on chest CT data to extract airway trees and coronary arteries. In both cases, we show that our method performs significantly better than the original MHT method.Comment: Accepted for publication at the International Journal of Medical Physics and Practic

    Geometric Cross-Modal Comparison of Heterogeneous Sensor Data

    Full text link
    In this work, we address the problem of cross-modal comparison of aerial data streams. A variety of simulated automobile trajectories are sensed using two different modalities: full-motion video, and radio-frequency (RF) signals received by detectors at various locations. The information represented by the two modalities is compared using self-similarity matrices (SSMs) corresponding to time-ordered point clouds in feature spaces of each of these data sources; we note that these feature spaces can be of entirely different scale and dimensionality. Several metrics for comparing SSMs are explored, including a cutting-edge time-warping technique that can simultaneously handle local time warping and partial matches, while also controlling for the change in geometry between feature spaces of the two modalities. We note that this technique is quite general, and does not depend on the choice of modalities. In this particular setting, we demonstrate that the cross-modal distance between SSMs corresponding to the same trajectory type is smaller than the cross-modal distance between SSMs corresponding to distinct trajectory types, and we formalize this observation via precision-recall metrics in experiments. Finally, we comment on promising implications of these ideas for future integration into multiple-hypothesis tracking systems.Comment: 10 pages, 13 figures, Proceedings of IEEE Aeroconf 201

    Sensor Scheduling for Energy-Efficient Target Tracking in Sensor Networks

    Full text link
    In this paper we study the problem of tracking an object moving randomly through a network of wireless sensors. Our objective is to devise strategies for scheduling the sensors to optimize the tradeoff between tracking performance and energy consumption. We cast the scheduling problem as a Partially Observable Markov Decision Process (POMDP), where the control actions correspond to the set of sensors to activate at each time step. Using a bottom-up approach, we consider different sensing, motion and cost models with increasing levels of difficulty. At the first level, the sensing regions of the different sensors do not overlap and the target is only observed within the sensing range of an active sensor. Then, we consider sensors with overlapping sensing range such that the tracking error, and hence the actions of the different sensors, are tightly coupled. Finally, we consider scenarios wherein the target locations and sensors' observations assume values on continuous spaces. Exact solutions are generally intractable even for the simplest models due to the dimensionality of the information and action spaces. Hence, we devise approximate solution techniques, and in some cases derive lower bounds on the optimal tradeoff curves. The generated scheduling policies, albeit suboptimal, often provide close-to-optimal energy-tracking tradeoffs

    Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

    Full text link
    This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.Comment: Published in Journal of Machine Vision and Application
    • …
    corecore