314 research outputs found

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems

    Full text link
    Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.Comment: Accepted in the IEEE Communications Surveys and Tutorial

    Diversity Management in MIMO-OFDM Systems

    Get PDF

    Data Detection and Channel Estimation of OFDM Systems Using Differential Modulation

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation technique which is robust against multipath fading and very easy to implement in transmitters and receivers using the inverse fast Fourier transform and the fast Fourier transform. A guard interval using cyclic prefix is inserted in each OFDM symbol to avoid the inter-symbol interference. This guard interval should be at least equal to, or longer than the maximum delay spread of the channel to combat against inter-symbol interference properly. In coherent detection, channel estimation is required for the data detection of OFDM systems to equalize the channel effects. One of the popular techniques is to insert pilot tones (reference signals) in OFDM symbols. In conventional method, pilot tones are inserted into every OFDM symbols. Channel capacity is wasted due to the transmission of a large number of pilot tones. To overcome this transmission loss, incoherent data detection is introduced in OFDM systems, where it is not needed to estimate the channel at first. We use differential modulation based incoherent detection in this thesis for the data detection of OFDM systems. Data can be encoded in the relative phase of consecutive OFDM symbols (inter-frame modulation) or in the relative phase of an OFDM symbol in adjacent subcarriers (in-frame modulation). We use higher order differential modulation for in-frame modulation to compare the improvement of bit error rate. It should be noted that the single differential modulation scheme uses only one pilot tone, whereas the double differential uses two pilot tones and so on. Thus overhead due to the extra pilot tones in conventional methods are minimized and the detection delay is reduced. It has been observed that the single differential scheme works better in low SNRs (Signal to Noise Ratios) with low channel taps and the double differential works better at higher SNRs. Simulation results show that higher order differential modulation schemes don¡¯t have any further advantages. For inter-frame modulation, we use single differential modulation where only one OFDM symbol is used as a reference symbol. Except the reference symbol, no other overhead is required. We also perform channel estimation using differential modulation. Channel estimation using differential modulation is very easy and channel coefficients can be estimated very accurately without increasing any computational complexity. Our simulation results show that the mean square channel estimation error is about ¡¼10¡½^(-2) at an SNR of 30 dB for double differential in-frame modulation scheme, whereas channel estimation error is about ¡¼10¡½^(-4) for single differential inter-frame modulation. Incoherent data detection using classical DPSK (Differential Phase Shift Keying) causes an SNR loss of approximately 3 dB compared to coherent detection. But in our method, differential detection can estimate the channel coefficients very accurately and our estimated channel can be used in simple coherent detection to improve the system performance and minimize the SNR loss that happens in conventional method

    Programmable DSP-enabled multi-adaptive optical transceivers based on OFDM technology for software defined networks

    Get PDF
    The dynamic behavior of the traffic demand, due to the advent of technologies such as cloud services or Internet of Things (IoT), is increasing. In fact, heterogeneous connections with different characteristics (bandwidth or bit rate) are expected that coexist in the optical networks. In this respect, an evolution towards Elastic Optical Networks (EONs) has emerged as a cost-effective, flexible and dynamic solution, to face the new claims. The main idea is the efficient utilization of the optical spectrum by combining flexible transceivers, flexi-grid and flexible optical switching. Including the principles of Software Defined Network (SDN) paradigm further flexibility and adaptability can be achieved. The Sliceable Bandwidth Variable Transceiver (S-BVT), as a key element in EONs, provides flexibility and adaptability to the optical networks. It is able to dynamically tune the optical bandwidth or bit rate changing parameters such as the modulation format, bandwidth, among others, to find a trade-off between transmission reach and spectral efficiency, serving multiples destinations. The combination of programmable Digital Signal Processing (DSP) modules with advanced transmission techniques based on Orthogonal Frequency Division Multiplexing (OFDM) technology using Direct Detection (DD) or COherent (CO) detection are proposed to be implemented at the S-BVT making it suitable for elastic optical metro/regional networks. Furthermore, the envisioned migration from fixed-grid to flexi-grid, can benefit from the use of S-BVTs since they are able to generate or receive multiple channels and slicing the aggregated flow into multiples flows with different capacities and destinations. We propose the use of S-BVTs based on multi-band OFDM systems. In particular, we focus on the theoretical model of an advanced transmission technique based on OFDM technology with DD. Then we evaluate the system for a realistic optical metro network. In the context of flexi-grid optical metro/regional networks, as well as the sliceability of the channels, the reduction of channel width for low bit rate connections can be envisioned. It involves that the signal traverses several nodes with the corresponding filtering elements, causing a substantially decrease and distortion of the signal bandwidth. This phenomenon known as filter narrowing effect has been also studied in this thesis, by simulations and experimentally for an adaptive cost-effective OFDM system using DD and for a standard OOK system. Apart from adaptive, flexible and programmable transceivers, metro optical networks have to be equipped with flexible optical switching systems at the node level. In this respect, we propose the adoption of adaptive S-BVTs based on advanced transmission techniques using DD with Discrete MultiTone (DMT) modulation and adaptive capabilities in combination with Semiconductor Optical Amplier (SOA)-based switching nodes. SOAs can be conveniently used for optical switching in metro networks because of their low cost or low power consumption, among others relevant characteristics. The system has been experimentally analyzed with and without considering filtering elements. Thanks to the combination of adaptive DMT modulation and SOA-based switching nodes, impairments due to the fiber links and the filtering elements can be compensated. Finally, to enhance the tranmission distance and data rate, we propose the combination of multidimensional constellations implemented at the DSP modules of the S-BVT with CO detection and OFDM technology. Thus, the deployed infrastructure is more efficiently exploited since the quadrature and the polarization dimensions are used to transmit the signal. In particular, we focus on CO-OFDM systems using Dual Polarization Quadrature Phase Shift Keying (DPQPSK) constellation transmitting the signal over the time and the polarization dimensions in the optical domain.El comportamiento dinámico de la demanda de tráfico, debido a la llegada de tecnologías como los servicios en la nube o el Internet of Things (IoT), está aumentando. De hecho, se espera que coexistan en las redes ópticas conexiones heterogéneas con características diferentes, tales como ancho de banda o tasa de bits. Para hacer frente a estas demandas es crucial una evolución de las redes ópticas. En este sentido, las Elastic Optical Networks (EONs) emergen como una solución rentable, flexible y dinámica. La idea principal se basa en la utilización eficiente del espectro óptico mediante la combinación de transceptores flexibles, redes flexibles y conmutación óptica flexible. Una mayor flexibilidad y adaptabilidad se puede conseguir incluyendo los principios del paradigma conocido como Software Defined Network (SDN). La adopción de la arquitectura SDN implica la separación del plano de control y de datos, permitiendo la programabilidad dinámica de la red. Un elemento clave en las EONs es el Sliceable Bandwidth Variable Transceiver (SBVT), ya que provee de flexibilidad y adaptabilidad a las redes ópticas. El S-BVT es capaz de cambiar el ancho de banda o la tasa de bits medicando parámetros como el formato de modulación, el ancho de banda o la codificación de Forward Error Correction (FEC), entre otros, para encontrar un equilibrio entre el alcance de la transmisión y la eficiencia espectral, sirviendo múltiples destinos. La combinación de módulos programables de Digital Signal Processing (DSP) con técnicas de transmisión avanzadas, basadas en la tecnología Orthogonal Frequency Division Multiplexing (OFDM) con detección directa o detección coherente, se han propuesto para ser implementadas en el S-BVT, haciéndolo adecuado para su uso en redes ópticas elásticas metropolitanas y regionales. Además, la migración prevista de las redes fijas a las redes flexibles, con el fin de explotar la granularidad de 12:5 GHz, puede beneficiarse del uso de S-BVTs ya que son capaces de generar y recibir múltiples canales y dividir el flujo agregado en múltiples flujos con diferentes capacidades y destinos. A este respecto, proponemos el uso de S-BVTs basados en señales OFDM multi banda combinadas en el dominio eléctrico con el fin de limitar los recursos optoelectrónicas y relajar los requerimientos de los convertidores digitales analógicos y analógicos digitales. En particular, nos centramos en el modelo teórico de una técnica de transmisión avanzada basada en la tecnología OFDM con detección directa. A continuación, evaluamos el sistema para una red metropolitana óptica realista. En el contexto de redes metropolitanas y regionales flexibles, además de la capacidad de división de los canales, se puede prever una posible reducción del ancho de canal para las conexiones de baja tasa de bits. Esto implica que la señal atraviese varios nodos con los correspondientes elementos filtrantes causando un substancial decremento y distorsión del ancho de banda de la señal. Este fenómeno conocido como el efecto de estrechamiento de filtrado ha sido también estudiado en esta tesis, mediante simulaciones y de manera experimental para un sistema OFDM rentable y adaptativo usando detección directa y un sistema estándar On-Off Keying (OOK). El sistema OFDM de detección directa ha resultado ser un buen candidato para aumentar la flexibilidad y la robustez frente a las deficiencias de transmisión sin necesidad de compensar la dispersión. Aparte de los transceptores adaptables, flexibles y programables, las redes ópticas metropolitanas deben estar equipadas con sistemas de conmutación óptica flexible a nivel de nodo. En este sentido, proponemos la adopción de S-BVTs adaptativos basados en técnicas de transmisión avanzadas usando detección directa con modulación Discrete MultiTone (DMT) y capacidades adaptativas, adoptando nodos de conmutación basados en Semiconductor Optical Amplifier (SOA). Los SOAs pueden ser utilizados para la conmutación óptica en redes metropolitanas debido a su bajo coste o bajo consumo de energía, entre otras características relevantes. El sistema ha sido analizado experimentalmente considerando y sin considerar la presencia de elementos filtrantes. Gracias a la combinación de la modulación DMT adaptativa y los nodos de conmutación basados en SOA, las degradaciones debidas a los enlaces de fibra y a los elementos filtrantes se pueden compensar. Finalmente, para mejorar la distancia de transmisión y la tasa de datos, proponemos la combinación de constelaciones multidimensionales implementadas en los módulos DSP del S-BVT utilizando detectaron coherente y la tecnología OFDM. De hecho, los sistemas OFDM coherentes tienen un espacio de señal 4D (dos cuadraturas y dos polarizaciones), que puede ser utilizado con constelaciones multidimensionales, pudiendo éstas ser más eficientes que las convencionales Binary Phase-Shift Keying (BPSK) o Quadrature Phase-Shift Keying (QPSK). De este modo, la infraestructura desplegada se explota de manera más eficiente, ya que tanto la dimensión de cuadratura como de polarización se utilizan para transmitir la señal. Además, los sistemas OFDM coherentes pueden recuperar la amplitud y la fase de la señal en el receptor, mitigando los efectos de la fibra aumentando, de esta forma, la distancia de transmisión. El sistema OFDM coherente que utiliza el formato de constelación Dual Polarization Quadrature Phase Shift Keying (DPQPSK) y que transmite la señal a lo largo del tiempo ha demostrado ser una solución prometedora.El comportament dinàmic de la demanda de transit, a causa de l'arribada de tecnologies, com poden ser els serveis al núvol o l'Internet of Things (IoT), està creixent. De fet, s'espera que coexisteixin a les xarxes òptiques connexions heterogènies amb característiques diferents, tal com l'ample de banda o la taxa de bits. Per a fer front a aquestes demandes és crucial una revolució de les xarxes òptiques. En aquest sentit, les Elastic Optical Networks (EONs) emergeixen com una solució rendible, flexible i dinàmica. La idea principal es basa en la utilització eficient de l'espectre òptic mitjançant la combinació de transceptors flexibles, xarxes flexibles i commutació òptica flexible. Una major flexibilitat i adaptabilitat es pot aconseguir incloent els principis del paradigma conegut com a Software Defined Networks (SDN). L’adopció de l'arquitectura SDN implica la separació del plànol de control i de dades permetent la programabilitat de la xarxa d'una forma dinàmica. Un element clau en les EONs és l'Sliceable Bandwith Variable Transceiver (S-BVT), ja que aporta flexibilitat i adaptabilitat a les xarxes òptiques. L' S-BVT és capaç de canviar l'ample de banda o la taxa de bits modificant paràmetres com el format de modulació, l'ample de banda o la codificació del Forward Error Correction (FEC), entre altres, per a trobar un equilibri entre l’assistència assolida i l’eficiència espectral, servint múltiples destinacions. La combinació de mòduls de Digital Signal Processing (DSP) amb tècniques de transmissió avançades basades en la tecnologia Orthogonal Frequency Division Multiplexing (OFDM) i detecció directa o detecció coherent s'han proposat per a ser implementades en l'S-BVT, fent-lo adient per a les xarxes òptiques elàstiques metropolitanes i regionals. A més, la migració prevista des de les xarxes fixes a les xarxes flexibles, amb el fi d'explotar la granuralitat de 12:5GHz, pot beneficiar-se de l’ús d'S-BVTs ja que són capaços de generar i rebre múltiples canals i dividir el flux agregat en múltiples fluxos amb diferents capacitats i destinacions. Per aquest motiu, proposem l’ús d'S-BVTs basats en senyals OFDM multi banda combinats en el domini elèctric amb el fi de limitar els recursos optoelectrònics i relaxar els requeriments dels convertidors digitals analògics i analògics digitals. Particularment, ens centrem en el model teòric d'una tècnica de transmissió avançada basada en la tecnologia OFDM amb detecció directa. A continuació, avaluem el sistema per a una xarxa metropolitana òptica realista. En el context de xarxes metropolitanes i regionals flexibles, a més de la propietat de divisió dels canals, es pot preveure una possible reducció de l'ample de canal per a les connexions de baixa taxa de bits. Això implica que el senyal travessi diversos nodes amb els corresponents elements filtrants causant un substancial decrement i distorsió de l'ample de banda del senyal. Aquest fenomen conegut com l'efecte d'estretament de filtrat ha sigut també estudiat en aquesta tesi, mitjançant simulacions i de manera experimental en el cas d'un sistema OFDM rendible i adaptatiu utilitzant detecció directa i un sistema estàndard On-Off Keying (OOK). El sistema OFDM de detecció directa ha resultat ser un bon candidat per augmentar la flexibilitat i la robustesa front a les deficiències de transmissió sense necessitat de compensar la dispersió. A part dels transceptors adaptables, flexibles i programables, les xarxes òptiques metropolitanes han d'estar equipades amb sistemes de commutació òptica flexible a nivell de node. En aquest sentit, proposem l’adopció d'un S-BVT adaptatiu basat en tècniques de transmissió avançades i utilitzant detecció directa amb modulació Discrete MultiTone (DMT) i capacitats adaptatives, adoptant nodes de comunicació basats en Semi-conductor Optical Amplifier (SOA). Els SOAs poden ser utilitzats per la commutació _òptica en xarxes metropolitanes degut al seu baix cost o baix consum d'energia, entre altres característiques rellevants. El sistema ha sigut analitzat experimentalment considerant i sense considerar la presència d'elements filtrants. Gràcies a la combinació de la modulació DMT adaptativa i dels nodes de commutació basats en SOA, les degradacions degudes als enllaços de fibra i als elements filtrants es poden compensar. Finalment, per a millorar la distància de transmissió i la taxa de dades, proposem la combinació de constel·lacions multidimensionals implementades als mòduls DSP de l'SBVT utilitzant detecció coherent i la tecnologia OFDM. De fet, els sistemes coherents OFDM tenen un espai de senyal 4D (dues quadratures i dues polaritzacions), que pot ser utilitzat amb constel·lacions multidimensionals, arribant a ser més eficients que les modulacions convencionals Binary Phase-Shift Keying (BPSK) o Quadrature Phase-Shift Keying (QPSK). D'aquesta manera, la infraestructura desplegada s'explota de forma més eficient, ja que tant la dimensió de quadratura com de polarització s'utilitzen per transmetre el senyal. A més, els sistemes coherents basats en OFDM poden recuperar l'amplitud i la fase del senyal en el receptor, mitigant els efectes de la fibra i d'aquesta forma augmentant la distància de transmissió. El sistema OFDM coherent que utilitza el format de constel·lació Dual Polarization Quadrature Phase Shift Keying (DPQPSK) i que transmet el senyal al llarg del temps ha demostrat ser una solució prometedora.Postprint (published version

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well

    Smart Antenna-Aided Multicarrier Transceivers for Mobile Communications

    Get PDF
    In spite of an immense interest from both the academic and the industrial communities, a practical multipleinput multiple-output (MIMO) transceiver architecture, capable of approaching channel capacity boundaries in realistic channel conditions remains largely an open problem. Consequently, in this treatise I derive an advanced iterative, so called turbo multi-antenna-multi-carrier (MAMC) receiver architecture. Following the philosophy of turbo processing, our turbo spacial division multiplexed (SDM)-orthogonal frequency division multiplexed (OFDM) receiver comprises a succession of soft-input-soft-output detection modules, which iteratively exchange soft bit-related information and thus facilitate a substantial improvement of the overall system performance. In this treatise, I explore two major aspects of the turbo wireless mobile receiver design. Firstly, I consider the problem of soft-decision-feedback aided acquisition of the propagation conditions experienced by the transmitted signal and secondly, I explore the issue of the soft-input-soft-output detection of the spatially-multiplexed information-carrying signals
    corecore