558 research outputs found

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Ray Tracing Gems

    Get PDF
    This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for: Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPU

    Logarithmic perspective shadow maps

    Get PDF
    The shadow map algorithm is a popular approach for generating shadows for real-time applications. Shadow maps are flexible and easy to implement, but they are prone to aliasing artifacts. To reduce aliasing artifacts we introduce logarithmic perspective shadow maps (LogPSMs). LogPSMs are based on a novel shadow map parameterization that consists of a perspective projection and a logarithmic transformation. They can be used for both point and directional light sources to produce hard shadows. To establish the benefits of LogPSMs, we perform an in-depth analysis of shadow map aliasing error and the error characteristics of existing algorithms. Using this analysis we compute a parameterization that produces near-optimal perspective aliasing error. This parameterization has high arithmetical complexity which makes it less practical than existing methods. We show, however, that over all light positions, the simpler LogPSM parameterization produces the same maximum error as the near-optimal parameterization. We also show that compared with competing algorithms, LogPSMs produce significantly less aliasing error. Equivalently, for the same error as competing algorithms, LogPSMs require significantly less storage and bandwidth. We demonstrate difference in shadow quality achieved with LogPSMs on several models of varying complexity. LogPSMs are rendered using logarithmic rasterization. We show how current GPU architectures can be modified incrementally to perform logarithmic rasterization at current GPU fill rates. Specifically, we modify the rasterizer to support rendering to a nonuniform grid with the same watertight rasterization properties as current rasterizers. We also describe a novel depth compression scheme to handle the nonlinear primitives produced by logarithmic rasterization. Our proposed architecture enhancements align with current trends of decreasing cost for on-chip computation relative to off-chip bandwidth and storage. For only a modest increase in computation, logarithmic rasterization can greatly reduce shadow map bandwidth and storage costs

    Realistic Visualization of Animated Virtual Cloth

    Get PDF
    Photo-realistic rendering of real-world objects is a broad research area with applications in various different areas, such as computer generated films, entertainment, e-commerce and so on. Within photo-realistic rendering, the rendering of cloth is a subarea which involves many important aspects, ranging from material surface reflection properties and macroscopic self-shadowing to animation sequence generation and compression. In this thesis, besides an introduction to the topic plus a broad overview of related work, different methods to handle major aspects of cloth rendering are described. Material surface reflection properties play an important part to reproduce the look & feel of materials, that is, to identify a material only by looking at it. The BTF (bidirectional texture function), as a function of viewing and illumination direction, is an appropriate representation of reflection properties. It captures effects caused by the mesostructure of a surface, like roughness, self-shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding. Unfortunately a BTF data set of a material consists of hundreds to thousands of images, which exceeds current memory size of personal computers by far. This work describes the first usable method to efficiently compress and decompress a BTF data for rendering at interactive to real-time frame rates. It is based on PCA (principal component analysis) of the BTF data set. While preserving the important visual aspects of the BTF, the achieved compression rates allow the storage of several different data sets in main memory of consumer hardware, while maintaining a high rendering quality. Correct handling of complex illumination conditions plays another key role for the realistic appearance of cloth. Therefore, an upgrade of the BTF compression and rendering algorithm is described, which allows the support of distant direct HDR (high-dynamic-range) illumination stored in environment maps. To further enhance the appearance, macroscopic self-shadowing has to be taken into account. For the visualization of folds and the life-like 3D impression, these kind of shadows are absolutely necessary. This work describes two methods to compute these shadows. The first is seamlessly integrated into the illumination part of the rendering algorithm and optimized for static meshes. Furthermore, another method is proposed, which allows the handling of dynamic objects. It uses hardware-accelerated occlusion queries for the visibility determination. In contrast to other algorithms, the presented algorithm, despite its simplicity, is fast and produces less artifacts than other methods. As a plus, it incorporates changeable distant direct high-dynamic-range illumination. The human perception system is the main target of any computer graphics application and can also be treated as part of the rendering pipeline. Therefore, optimization of the rendering itself can be achieved by analyzing human perception of certain visual aspects in the image. As a part of this thesis, an experiment is introduced that evaluates human shadow perception to speedup shadow rendering and provides optimization approaches. Another subarea of cloth visualization in computer graphics is the animation of the cloth and avatars for presentations. This work also describes two new methods for automatic generation and compression of animation sequences. The first method to generate completely new, customizable animation sequences, is based on the concept of finding similarities in animation frames of a given basis sequence. Identifying these similarities allows jumps within the basis sequence to generate endless new sequences. Transmission of any animated 3D data over bandwidth-limited channels, like extended networks or to less powerful clients requires efficient compression schemes. The second method included in this thesis in the animation field is a geometry data compression scheme. Similar to the BTF compression, it uses PCA in combination with clustering algorithms to segment similar moving parts of the animated objects to achieve high compression rates in combination with a very exact reconstruction quality.Realistische Visualisierung von animierter virtueller Kleidung Das photorealistisches Rendering realer Gegenstände ist ein weites Forschungsfeld und hat Anwendungen in vielen Bereichen. Dazu zählen Computer generierte Filme (CGI), die Unterhaltungsindustrie und E-Commerce. Innerhalb dieses Forschungsbereiches ist das Rendern von photorealistischer Kleidung ein wichtiger Bestandteil. Hier reichen die wichtigen Aspekte, die es zu berücksichtigen gilt, von optischen Materialeigenschaften über makroskopische Selbstabschattung bis zur Animationsgenerierung und -kompression. In dieser Arbeit wird, neben der Einführung in das Thema, ein weiter Überblick über ähnlich gelagerte Arbeiten gegeben. Der Schwerpunkt der Arbeit liegt auf den wichtigen Aspekten der virtuellen Kleidungsvisualisierung, die oben beschrieben wurden. Die optischen Reflektionseigenschaften von Materialoberflächen spielen eine wichtige Rolle, um das so genannte look & feel von Materialien zu charakterisieren. Hierbei kann ein Material vom Nutzer identifiziert werden, ohne dass er es direkt anfassen muss. Die BTF (bidirektionale Texturfunktion)ist eine Funktion die abhängig von der Blick- und Beleuchtungsrichtung ist. Daher ist sie eine angemessene Repräsentation von Reflektionseigenschaften. Sie enthält Effekte wie Rauheit, Selbstabschattungen, Verdeckungen, Interreflektionen, Streuung und Farbbluten, die durch die Mesostruktur der Oberfläche hervorgerufen werden. Leider besteht ein BTF Datensatz eines Materials aus hunderten oder tausenden von Bildern und sprengt damit herkömmliche Hauptspeicher in Computern bei weitem. Diese Arbeit beschreibt die erste praktikable Methode, um BTF Daten effizient zu komprimieren, zu speichern und für Echtzeitanwendungen zum Visualisieren wieder zu dekomprimieren. Die Methode basiert auf der Principal Component Analysis (PCA), die Daten nach Signifikanz ordnet. Während die PCA die entscheidenen visuellen Aspekte der BTF erhält, können mit ihrer Hilfe Kompressionsraten erzielt werden, die es erlauben mehrere BTF Materialien im Hauptspeicher eines Consumer PC zu verwalten. Dies erlaubt ein High-Quality Rendering. Korrektes Verwenden von komplexen Beleuchtungssituationen spielt eine weitere, wichtige Rolle, um Kleidung realistisch erscheinen zu lassen. Daher wird zudem eine Erweiterung des BTF Kompressions- und Renderingalgorithmuses erläutert, die den Einsatz von High-Dynamic Range (HDR) Beleuchtung erlaubt, die in environment maps gespeichert wird. Um die realistische Erscheinung der Kleidung weiter zu unterstützen, muss die makroskopische Selbstabschattung integriert werden. Für die Visualisierung von Falten und den lebensechten 3D Eindruck ist diese Art von Schatten absolut notwendig. Diese Arbeit beschreibt daher auch zwei Methoden, diese Schatten schnell und effizient zu berechnen. Die erste ist nahtlos in den Beleuchtungspart des obigen BTF Renderingalgorithmuses integriert und für statische Geometrien optimiert. Die zweite Methode behandelt dynamische Objekte. Dazu werden hardwarebeschleunigte Occlusion Queries verwendet, um die Sichtbarkeitsberechnung durchzuführen. Diese Methode ist einerseits simpel und leicht zu implementieren, anderseits ist sie schnell und produziert weniger Artefakte, als vergleichbare Methoden. Zusätzlich ist die Verwendung von veränderbarer, entfernter HDR Beleuchtung integriert. Das menschliche Wahrnehmungssystem ist das eigentliche Ziel jeglicher Anwendung in der Computergrafik und kann daher selbst als Teil einer erweiterten Rendering Pipeline gesehen werden. Daher kann das Rendering selbst optimiert werden, wenn man die menschliche Wahrnehmung verschiedener visueller Aspekte der berechneten Bilder analysiert. Teil der vorliegenden Arbeit ist die Beschreibung eines Experimentes, das menschliche Schattenwahrnehmung untersucht, um das Rendern der Schatten zu beschleunigen. Ein weiteres Teilgebiet der Kleidungsvisualisierung in der Computergrafik ist die Animation der Kleidung und von Avataren für Präsentationen. Diese Arbeit beschreibt zwei neue Methoden auf diesem Teilgebiet. Einmal ein Algorithmus, der für die automatische Generierung neuer Animationssequenzen verwendet werden kann und zum anderen einen Kompressionsalgorithmus für eben diese Sequenzen. Die automatische Generierung von völlig neuen, anpassbaren Animationen basiert auf dem Konzept der Ähnlichkeitssuche. Hierbei werden die einzelnen Schritte von gegebenen Basisanimationen auf Ähnlichkeiten hin untersucht, die zum Beispiel die Geschwindigkeiten einzelner Objektteile sein können. Die Identifizierung dieser Ähnlichkeiten erlaubt dann Sprünge innerhalb der Basissequenz, die dazu benutzt werden können, endlose, neue Sequenzen zu erzeugen. Die Übertragung von animierten 3D Daten über bandbreitenlimitierte Kanäle wie ausgedehnte Netzwerke, Mobilfunk oder zu sogenannten thin clients erfordert eine effiziente Komprimierung. Die zweite, in dieser Arbeit vorgestellte Methode, ist ein Kompressionsschema für Geometriedaten. Ähnlich wie bei der Kompression von BTF Daten wird die PCA in Verbindung mit Clustering benutzt, um die animierte Geometrie zu analysieren und in sich ähnlich bewegende Teile zu segmentieren. Diese erkannten Segmente lassen sich dann hoch komprimieren. Der Algorithmus arbeitet automatisch und erlaubt zudem eine sehr exakte Rekonstruktionsqualität nach der Dekomprimierung

    Fast Mesh-based physical optics for large-scale electromagnetic analysis

    Get PDF
    Thesis (DPhil)--Stellenbosch University, 2016.ENGLISH ABSTRACT: At sufficiently high frequencies, the electrical size of scattering objects become very large. The electromagnetic field simulation of such objects becomes prohibitively expensive with physically rigorous (full wave) computational electromagnetics methods. In such cases, methods based on asymptotic assumptions can be employed instead, to approximately solve Maxwell’s equations. The physical optics (PO) approximation for a conducting surface, is a well-known asymptotic assumption. The multiple-reflection PO (MRPO) method is obtained by applying the PO approximation recursively, to model multiple reflections occurring internally to an object. The overall research goal of this work is to significantly accelerate the mesh-based MRPO for electromagnetic scattering analysis. A standard representation was chosen for the surface current, namely Rao- Wilton-Glisson (RWG) basis functions on a mesh of triangle elements. Since the MRPO is an extension of the single-reflection PO (SRPO), the main bottleneck in the SRPO, namely incident field shadowing determination, is addressed first. An adaptive, multilevel, buffer-based shadowing determination algorithm is developed which is robustly optimal, yielding O(N) time-scaling results for extreme test cases (N denotes the number of mesh elements). Secondly, the first ever, comprehensively accelerated version of the meshbased MRPO method (which rigorously takes internal shadowing into account), denoted fast MRPO (FMRPO), is developed. The FMRPO uses the multi-level, fast multipole method (MLFMM) to accelerate internal reflected field calculations. The inter-group interaction criterion of the MLFMM is altered to account for shadowing. Inter-group shadowing status flags are efficiently evaluated. The runtime scaling of the conventional MRPO is O(Nˆ2), while the runtime of the FMRPO scales as quasi-O(N log N), depending on the specific geometry. Results are presented for practical geometries with larger electrical sizes than have ever before been considered with the MRPO, but which can now for the first time be solved in realistically fast runtimes. With the FMRPO there is no fundamental limit to the electrical size of the scattering objects that can be solved.AFRIKAANSE OPSOMMING: By genoegsaam hoë frekwensies is die elektriese grootte van verstrooiingsvoorwerpe baie groot. Die elektromagnetiese veldsimulasie van sulke voorwerpe met fisies omvattende (volgolf) numeriese elektromagnetika metodes word dan te duur. In sulke gevalle kan metodes gebaseer op asimptotiese aannames eerder ingespan word, om Maxwell se vergelykings by benadering op te los. Die fisiese optika (FO) benadering vir ’n geleidende oppervlak is ’n welbekende asimptotiese aanname. Die multi-refleksie FO (MRFO) metode word verkry deur die FO benadering rekursief toe te pas, om veelvoudige refleksies te modelleer wat intern tot ’n voorwerp plaasvind. Die hoof navorsingsdoelwit van hierdie werk is om die maas-gebaseerde MRFO noemenswaardig te versnel vir elektromagnetiese verstrooiingsanalise. ’n Standaard voorstelling is gekies vir die oppervlaktestroomdigtheid, naamlik Rao-Wilton-Glisson (RWG) basisfunksies op ’n maas van driehoek elemente. Gegee dat MRFO ’n uitbreiding van enkel-refleksie FO (ERFO) is, word die hoof bottelnek van die ERFO, naamlik invallende-veld skaduweebepaling, eerste aangespreek. ’n Aanpassingsvaardige, multivlak, buffer-gebaseerde, skaduweebepalingsalgoritme is ontwikkel wat robuust optimaal is, met O(N) tydskaleringsresultate vir uiterste toetsgevalle (N verwys na die aantal maaselemente). Tweedens is die heel eerste, omvattend versnelde weergawe van die maas-gebaseerde MRFO metode (wat interne skaduwees streng in ag neem), genoem vinnige MRFO (VMRFO), ontwikkel. Die VMRFO inkorporeer die multivlak, vinnige multipool metode (MVVMM) om interne, weerkaatste veldberekeninge te versnel. Die intergroep interaksiekriterium van die MVVMM is aangepas om skaduwees in ag te neem. Intergroep skadustatusvlaggies word doeltreffend bepaal. Die berekeningstyd van die konvensionele MRFO skaleer as O(Nˆ2), terwyl die berekeningstyd van die VMRFO skaleer as kwasi-O(N log N), na gelang van die spesifieke geometrie. Resultate word getoon vir praktiese verstrooiingsvoorwerpe wat elektries groter is as wat ooit vantevore met die MRFO aangepak is, wat nou vir die eerste keer opgelos kan word in realisties vinnige berekeningstye. Met die VMRFO is daar geen fundamentele beperking op die elektriese grootte van die verstrooiingsvoorwerpe wat kan opgelos word nie

    A Render Model For Particle System

    Get PDF
    Particle system is a very commonly used system in computer graphics. It can be used to simulate many objects in the real world, such as liquid simulation, smoke simulation and so on. Now, a new method called welding simulation has been developed. In this simulation, it needs to give the particle system a metal-like surface. Therefore, in this thesis, we developed a render model which can make a particle system have a metal-like surface. This render model can be used in welding simulation application and also for other applications based on particle systems with metal-like surfac

    Visually pleasing real-time global illumination rendering for fully-dynamic scenes

    Get PDF
    Global illumination (GI) rendering plays a crucial role in the photo-realistic rendering of virtual scenes. With the rapid development of graphics hardware, GI has become increasingly attractive even for real-time applications nowadays. However, the computation of physically-correct global illumination is time-consuming and cannot achieve real-time, or even interactive performance. Although the realtime GI is possible using a solution based on precomputation, such a solution cannot deal with fully-dynamic scenes. This dissertation focuses on solving these problems by introducing visually pleasing real-time global illumination rendering for fully-dynamic scenes. To this end, we develop a set of novel algorithms and techniques for rendering global illumination effects using the graphics hardware. All these algorithms not only result in real-time or interactive performance, but also generate comparable quality to the previous works in off-line rendering. First, we present a novel implicit visibility technique to circumvent expensive visibility queries in hierarchical radiosity by evaluating the visibility implicitly. Thereafter, we focus on rendering visually plausible soft shadows, which is the most important GI effect caused by the visibility determination. Based on the pre-filtering shadowmapping theory, wesuccessively propose two real-time soft shadow mapping methods: "convolution soft shadow mapping" (CSSM) and "variance soft shadow mapping" (VSSM). Furthermore, we successfully apply our CSSM method in computing the shadow effects for indirect lighting. Finally, to explore the GI rendering in participating media, we investigate a novel technique to interactively render volume caustics in the single-scattering participating media.Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung virtueller Szenen von entscheidender Bedeutung. Dank der rapiden Entwicklung der Grafik-Hardware wird die globale Beleuchtung heutzutage sogar für Echtzeitanwendungen immer attraktiver. Trotz allem ist die Berechnung physikalisch korrekter globaler Beleuchtung zeitintensiv und interaktive Laufzeiten können mit "standard Hardware" noch nicht erzielt werden. Obwohl das Rendering auf der Grundlage von Vorberechnungen in Echtzeit möglich ist, kann ein solcher Ansatz nicht auf voll-dynamische Szenen angewendet werden. Diese Dissertation zielt darauf ab, das Problem der globalen Beleuchtungsberechnung durch Einführung von neuen Techniken für voll-dynamische Szenen in Echtzeit zu lösen. Dazu stellen wir eine Reihe neuer Algorithmen vor, die die Effekte der globaler Beleuchtung auf der Grafik-Hardware berechnen. All diese Algorithmen erzielen nicht nur Echtzeit bzw. interaktive Laufzeiten sondern liefern auch eine Qualität, die mit bisherigen offline Methoden vergleichbar ist. Zunächst präsentieren wir eine neue Technik zur Berechnung impliziter Sichtbarkeit, die aufwändige Sichbarkeitstests in hierarchischen Radiosity-Datenstrukturen vermeidet. Anschliessend stellen wir eine Methode vor, die weiche Schatten, ein wichtiger Effekt für die globale Beleuchtung, in Echtzeit berechnet. Auf der Grundlage der Theorie über vorgefilterten Schattenwurf, zeigen wir nacheinander zwei Echtzeitmethoden zur Berechnung weicher Schattenwürfe: "Convolution Soft Shadow Mapping" (CSSM) und "Variance Soft Shadow Mapping" (VSSM). Darüber hinaus wenden wir unsere CSSM-Methode auch erfolgreich auf den Schatteneffekt in der indirekten Beleuchtung an. Abschliessend präsentieren wir eine neue Methode zum interaktiven Rendern von Volumen-Kaustiken in einfach streuenden, halbtransparenten Medien

    Robust object-based algorithms for direct shadow simulation

    Get PDF
    En informatique graphique, les algorithmes de générations d'ombres évaluent la quantité de lumière directement perçue par une environnement virtuel. Calculer précisément des ombres est cependant coûteux en temps de calcul. Dans cette dissertation, nous présentons un nouveau système basé objet robuste, qui permet de calculer des ombres réalistes sur des scènes dynamiques et ce en temps interactif. Nos contributions incluent notamment le développement de nouveaux algorithmes de génération d'ombres douces ainsi que leur mise en oeuvre efficace sur processeur graphique. Nous commençons par formaliser la problématique du calcul d'ombres directes. Tout d'abord, nous définissons ce que sont les ombres directes dans le contexte général du transport de la lumière. Nous étudions ensuite les techniques interactives qui génèrent des ombres directes. Suite à cette étude nous montrons que mêmes les algorithmes dit physiquement réalistes se reposent sur des approximations. Nous mettons également en avant, que malgré leur contraintes géométriques, les algorithmes d'ombres basées objet sont un bon point de départ pour résoudre notre problématique de génération efficace et robuste d'ombres directes. Basé sur cette observation, nous étudions alors le système basé objet existant et mettons en avant ses problèmes de robustesse. Nous proposons une nouvelle technique qui améliore la qualité des ombres générées par ce système en lui ajoutant une étape de mélange de pénombres. Malgré des propriétés et des résultats convaincants, les limitations théoriques et de mise en oeuvre limite la qualité générale et les performances de cet algorithme. Nous présentons ensuite un nouvel algorithme d'ombres basées objet. Cet algorithme combine l'efficacité de l'approche basée objet temps réel avec la précision de sa généralisation au rendu hors ligne. Notre algorithme repose sur l'évaluation locale du nombre d'objets entre deux points : la complexité de profondeur. Nous décrivons comment nous utilisons cet algorithme pour échantillonner la complexité de profondeur entre les surfaces visibles d'une scène et une source lumineuse. Nous générons ensuite des ombres à partir de cette information soit en modulant l'éclairage direct soit en intégrant numériquement l'équation d'illumination directe. Nous proposons ensuite une extension de notre algorithme afin qu'il puisse prendre en compte les ombres projetées par des objets semi-opaque. Finalement, nous présentons une mise en oeuvre efficace de notre système qui démontre que des ombres basées objet peuvent être générées de façon efficace et ce même sur une scène dynamique. En rendu temps réel, il est commun de représenter des objets très détaillés encombinant peu de triangles avec des textures qui représentent l'opacité binaire de l'objet. Les techniques de génération d'ombres basées objet ne traitent pas de tels triangles dit "perforés". De par leur nature, elles manipulent uniquement les géométries explicitement représentées par des primitives géométriques. Nous présentons une nouvel algorithme basé objet qui lève cette limitation. Nous soulignons que notre méthode peut être efficacement combinée avec les systèmes existants afin de proposer un système unifié basé objet qui génère des ombres à la fois pour des maillages classiques et des géométries perforées. La mise en oeuvre proposée montre finalement qu'une telle combinaison fournit une solution élégante, efficace et robuste à la problématique générale de l'éclairage direct et ce aussi bien pour des applications temps réel que des applications sensibles à la la précision du résultat.Direct shadow algorithms generate shadows by simulating the direct lighting interaction in a virtual environment. The main challenge with the accurate direct shadow problematic is its computational cost. In this dissertation, we develop a new robust object-based shadow framework that provides realistic shadows at interactive frame rate on dynamic scenes. Our contributions include new robust object-based soft shadow algorithms and efficient interactive implementations. We start, by formalizing the direct shadow problematic. Following the light transport problematic, we first formalize what are robust direct shadows. We then study existing interactive direct shadow techniques and outline that the real time direct shadow simulation remains an open problem. We show that even the so called physically plausible soft shadow algorithms still rely on approximations. Nevertheless we exhibit that, despite their geometric constraints, object-based approaches seems well suited when targeting accurate solutions. Starting from the previous analyze, we investigate the existing object-based shadow framework and discuss about its robustness issues. We propose a new technique that drastically improve the resulting shadow quality by improving this framework with a penumbra blending stage. We present a practical implementation of this approach. From the obtained results, we outline that, despite desirable properties, the inherent theoretical and implementation limitations reduce the overall quality and performances of the proposed algorithm. We then present a new object-based soft shadow algorithm. It merges the efficiency of the real time object-based shadows with the accuracy of its offline generalization. The proposed algorithm lies onto a new local evaluation of the number of occluders between twotwo points (\ie{} the depth complexity). We describe how we use this algorithm to sample the depth complexity between any visible receiver and the light source. From this information, we compute shadows by either modulate the direct lighting or numerically solve the direct illumination with an accuracy depending on the light sampling strategy. We then propose an extension of our algorithm in order to handle shadows cast by semi opaque occluders. We finally present an efficient implementation of this framework that demonstrates that object-based shadows can be efficiently used on complex dynamic environments. In real time rendering, it is common to represent highly detailed objects with few triangles and transmittance textures that encode their binary opacity. Object-based techniques do not handle such perforated triangles. Due to their nature, they can only evaluate the shadows cast by models whose their shape is explicitly defined by geometric primitives. We describe a new robust object-based algorithm that addresses this main limitation. We outline that this method can be efficiently combine with object-based frameworks in order to evaluate approximative shadows or simulate the direct illumination for both common meshes and perforated triangles. The proposed implementation shows that such combination provides a very strong and efficient direct lighting framework, well suited to many domains ranging from quality sensitive to performance critical applications

    Shadow Techniques for Interactive and Real-Time Applications

    Get PDF
    Shadows provide important visual cues for the relative position of objects in threedimensional space. For interactive and real-time applications, e.g. in virtual reality systems or games, the shadow computation needs to be extremely fast, usually synchronized with the displays refresh rate. Using dynamic scenes with many, movable light sources, shadow computation is therefore often the main bottleneck in a rendering system. In this thesis we will discuss this problem in detail: Originating from Williams shadow maps and Crows shadow volumes, we will present hardware accelerated shadow techniques that are able to generate shadows of high-quality while still being fast enough to be used in real-time or interactive applications. We will show algorithms for the computation of hard shadows as well as for the more complex problem of approximating soft shadows caused by area light sources.Schatten sind wichtige visuelle Merkmale die über die relative Position eines Objektes in einem drei-dimensionalen Raum Aufschluss geben. Die Schattenberechnung muss für interaktive und Echtzeit-Anwendungen, wie z.B. Virtual Reality Systeme oder in Spielen, extrem schnell erfolgen, idealerweise synchronisiert mit der Bildwiederholfrequenz. Im Fall von dynamischen Szenen mit vielen, beweglichen Lichtquellen, ist die Berechnung von Schatten oftmals der zeitkritischste Teil innerhalb eines Rendering-Systems. In dieser Dissertation behandeln wir genau dieses Problem im Detail. Ausgehend vonWilliams\u27; Shadow Maps und Crow\u27;s Shadow Volumes werden Hardwarebeschleunigte Schattentechniken vorgestellt, die Schatten von hoher Qualität erzeugen können, aber trotzdem so effizient sind, dass sie für Echtzeit- und interaktive Anwendungen eingesetzt werden können. Wir werden sowohl Algorithmen zur Berechnung harter Schatten beschreiben, als auch das schwierigere Problem der Approximation von sanften Schatten, wie sie z.B. bei Flächenlichtquellen entstehen, behandeln
    • …
    corecore