14,990 research outputs found

    On the vulnerabilities of voronoi-based approaches to mobile sensor deployment

    Get PDF
    Mobile sensor networks are the most promising solution to cover an Area of Interest (AoI) in safety critical scenarios. Mobile devices can coordinate with each other according to a distributed deployment algorithm, without resorting to human supervision for device positioning and network configuration. In this paper, we focus on the vulnerabilities of the deployment algorithms based on Voronoi diagrams to coordinate mobile sensors and guide their movements. We give a geometric characterization of possible attack configurations, proving that a simple attack consisting of a barrier of few compromised sensors can severely reduce network coverage. On the basis of the above characterization, we propose two new secure deployment algorithms, named SecureVor and Secure Swap Deployment (SSD). These algorithms allow a sensor to detect compromised nodes by analyzing their movements, under different and complementary operative settings. We show that the proposed algorithms are effective in defeating a barrier attack, and both have guaranteed termination. We perform extensive simulations to study the performance of the two algorithms and compare them with the original approach. Results show that SecureVor and SSD have better robustness and flexibility and excellent coverage capabilities and deployment time, even in the presence of an attac

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference

    Movement-efficient Sensor Deployment in Wireless Sensor Networks

    Full text link
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Two key issues in MWSNs - energy consumption, which is dominated by sensor movement, and sensing coverage - have attracted plenty of attention, but the interaction of these issues is not well studied. To take both sensing coverage and movement energy consumption into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment to maximize the sensing coverage with specific energy constraints. We derive necessary conditions to the optimal sensor deployment with (i) total energy constraint and (ii) network lifetime constraint. Using these necessary conditions, we design Lloyd-like algorithms to provide a trade-off between sensing coverage and energy consumption. Simulation results show that our algorithms outperform the existing relocation algorithms.Comment: 18 pages, 10 figure

    An efficient self-organizing node deployment algorithm for mobile sensor networks

    Get PDF

    A smart self-organizing node deployment algorithm in wireless sensor networks

    Get PDF

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Barrier Coverage in Wireless Sensor Networks

    Get PDF
    Barrier coverage is a critical issue in wireless sensor networks (WSNs) for security applications, which aims to detect intruders attempting to penetrate protected areas. However, it is difficult to achieve desired barrier coverage after initial random deployment of sensors because their locations cannot be controlled or predicted. In this dissertation, we explore how to leverage the mobility capacity of mobile sensors to improve the quality of barrier coverage. We first study the 1-barrier coverage formation problem in heterogeneous sensor networks and explore how to efficiently use different types of mobile sensors to form a barrier with pre-deployed different types of stationary sensors. We introduce a novel directional barrier graph model and prove that the minimum cost of mobile sensors required to form a barrier with stationary sensors is the length of the shortest path from the source node to the destination node on the graph. In addition, we formulate the problem of minimizing the cost of moving mobile sensors to fill in the gaps on the shortest path as a minimum cost bipartite assignment problem and solve it in polynomial time using the Hungarian algorithm. We further study the k-barrier coverage formation problem in sensor networks. We introduce a novel weighted barrier graph model and prove that determining the minimum number of mobile sensors required to form k-barrier coverage is related with but not equal to finding k vertex-disjoint paths with the minimum total length on the WBG. With this observation, we propose an optimal algorithm and a faster greedy algorithm to find the minimum number of mobile sensors required to form k-barrier coverage. Finally, we study the barrier coverage formation problem when sensors have location errors. We derive the minimum number of mobile sensors needed to fill in a gap with a guarantee when location errors exist and propose a progressive method for mobile sensor deployment. Furthermore, we propose a fault tolerant weighted barrier graph to find the minimum number of mobile sensors needed to form barrier coverage with a guarantee. Both analytical and experimental studies demonstrated the effectiveness of our proposed algorithms

    Cost Benefit Analysis of Utilising Mobile Nodes in Wireless Sensor Networks

    Get PDF
    • …
    corecore