570 research outputs found

    Wideband CMOS Data Converters for Linear and Efficient mmWave Transmitters

    Get PDF
    With continuously increasing demands for wireless connectivity, higher\ua0carrier frequencies and wider bandwidths are explored. To overcome a limited transmit power at these higher carrier frequencies, multiple\ua0input multiple output (MIMO) systems, with a large number of transmitters\ua0and antennas, are used to direct the transmitted power towards\ua0the user. With a large transmitter count, each individual transmitter\ua0needs to be small and allow for tight integration with digital circuits. In\ua0addition, modern communication standards require linear transmitters,\ua0making linearity an important factor in the transmitter design.In this thesis, radio frequency digital-to-analog converter (RF-DAC)-based transmitters are explored. They shift the transition from digital\ua0to analog closer to the antennas, performing both digital-to-analog\ua0conversion and up-conversion in a single block. To reduce the need for\ua0computationally costly digital predistortion (DPD), a linear and wellbehaved\ua0RF-DAC transfer characteristic is desirable. The combination\ua0of non-overlapping local oscillator (LO) signals and an expanding segmented\ua0non-linear RF-DAC scaling is evaluated as a way to linearize\ua0the transmitter. This linearization concept has been studied both for\ua0the linearization of the RF-DAC itself and for the joint linearization of\ua0the cascaded RF-DAC-based modulator and power amplifier (PA) combination.\ua0To adapt the linearization, observation receivers are needed.\ua0In these, high-speed analog-to-digital converters (ADCs) have a central\ua0role. A high-speed ADC has been designed and evaluated to understand\ua0how concepts used to increase the sample rate affect the dynamic performance

    Digital Signal Processing Techniques Applied to Radio over Fiber Systems

    Get PDF
    The dissertation aims to analyze different Radio over Fiber systems for the front-haul applications. Particularly, analog radio over fiber (A-RoF) are simplest and suffer from nonlinearities, therefore, mitigating such nonlinearities through digital predistortion are studied. In particular for the long haul A-RoF links, direct digital predistortion technique (DPDT) is proposed which can be applied to reduce the impairments of A-RoF systems due to the combined effects of frequency chirp of the laser source and chromatic dispersion of the optical channel. Then, indirect learning architecture (ILA) based structures namely memory polynomial (MP), generalized memory polynomial (GMP) and decomposed vector rotation (DVR) models are employed to perform adaptive digital predistortion with low complexities. Distributed feedback (DFB) laser and vertical capacity surface emitting lasers (VCSELs) in combination with single mode/multi-mode fibers have been linearized with different quadrature amplitude modulation (QAM) formats for single and multichannel cases. Finally, a feedback adaptive DPD compensation is proposed. Then, there is still a possibility to exploit the other realizations of RoF namely digital radio over fiber (D-RoF) system where signal is digitized and transmits the digitized bit streams via digital optical communication links. The proposed solution is robust and immune to nonlinearities up-to 70 km of link length. Lastly, in light of disadvantages coming from A-RoF and D-RoF, it is still possible to take only the advantages from both methods and implement a more recent form knows as Sigma Delta Radio over Fiber (S-DRoF) system. Second Order Sigma Delta Modulator and Multi-stAge-noise-SHaping (MASH) based Sigma Delta Modulator are proposed. The workbench has been evaluated for 20 MHz LTE signal with 256 QAM modulation. Finally, The 6x2 GSa/s sigma delta modulators are realized on FPGA to show a real time demonstration of S-DRoF system. The demonstration shows that S-DRoF is a competitive competitor for 5G sub-6GHz band applications

    Compact Digital Predistortion for Multi-band and Wide-band RF Transmitters

    Get PDF
    This thesis is focusing on developing a compact digital predistortion (DPD) system which costs less DPD added power consumptions. It explores a new theory and techniques to relieve the requirement of the number of training samples and the sampling-rate of feedback ADCs in DPD systems. A new theory about the information carried by training samples is introduced. It connects the generalized error of the DPD estimation algorithm with the statistical properties of modulated signals. Secondly, based on the proposed theory, this work introduces a compressed sample selection method to reduce the number of training samples by only selecting the minimal samples which satisfy the foreknown probability information. The number of training samples and complex multiplication operations required for coefficients estimation can be reduced by more than ten times without additional calculation resource. Thirdly, based on the proposed theory, this thesis proves that theoretically a DPD system using memory polynomial based behavioural modes and least-square (LS) based algorithms can be performed with any sampling-rate of feedback samples. The principle, implementation and practical concerns of the undersampling DPD which uses lower sampling-rate ADC are then introduced. Finally, the observation bandwidth of DPD systems can be extended by the proposed multi-rate track-and-hold circuits with the associated algorithm. By addressing several parameters of ADC and corresponding DPD algorithm, multi-GHz observation bandwidth using only a 61.44MHz ADC is achieved, and demonstrated the satisfactory linearization performance of multi-band and continued wideband RF transmitter applications via extensive experimental tests

    Development of Robust Analog and Mixed-Signal Circuits in the Presence of Process- Voltage-Temperature Variations

    Get PDF
    Continued improvements of transceiver systems-on-a-chip play a key role in the advancement of mobile telecommunication products as well as wireless systems in biomedical and remote sensing applications. This dissertation addresses the problems of escalating CMOS process variability and system complexity that diminish the reliability and testability of integrated systems, especially relating to the analog and mixed-signal blocks. The proposed design techniques and circuit-level attributes are aligned with current built-in testing and self-calibration trends for integrated transceivers. In this work, the main focus is on enhancing the performances of analog and mixed-signal blocks with digitally adjustable elements as well as with automatic analog tuning circuits, which are experimentally applied to conventional blocks in the receiver path in order to demonstrate the concepts. The use of digitally controllable elements to compensate for variations is exemplified with two circuits. First, a distortion cancellation method for baseband operational transconductance amplifiers is proposed that enables a third-order intermodulation (IM3) improvement of up to 22dB. Fabricated in a 0.13µm CMOS process with 1.2V supply, a transconductance-capacitor lowpass filter with the linearized amplifiers has a measured IM3 below -70dB (with 0.2V peak-to-peak input signal) and 54.5dB dynamic range over its 195MHz bandwidth. The second circuit is a 3-bit two-step quantizer with adjustable reference levels, which was designed and fabricated in 0.18µm CMOS technology as part of a continuous-time SigmaDelta analog-to-digital converter system. With 5mV resolution at a 400MHz sampling frequency, the quantizer's static power dissipation is 24mW and its die area is 0.4mm^2. An alternative to electrical power detectors is introduced by outlining a strategy for built-in testing of analog circuits with on-chip temperature sensors. Comparisons of an amplifier's measurement results at 1GHz with the measured DC voltage output of an on-chip temperature sensor show that the amplifier's power dissipation can be monitored and its 1-dB compression point can be estimated with less than 1dB error. The sensor has a tunable sensitivity up to 200mV/mW, a power detection range measured up to 16mW, and it occupies a die area of 0.012mm^2 in standard 0.18µm CMOS technology. Finally, an analog calibration technique is discussed to lessen the mismatch between transistors in the differential high-frequency signal path of analog CMOS circuits. The proposed methodology involves auxiliary transistors that sense the existing mismatch as part of a feedback loop for error minimization. It was assessed by performing statistical Monte Carlo simulations of a differential amplifier and a double-balanced mixer designed in CMOS technologies

    A fast engineering approach to high efficiency power amplifier linearization for avionics applications

    Get PDF
    This PhD thesis provides a fast engineering approach to the design of digital predistortion (DPD) linearizers from several perspectives: i) enhancing the off-line training performance of open-loop DPD, ii) providing robustness and reducing the computational complexity of the parameters identification subsystem and, iii) importing machine learning techniques to favor the automatic tuning of power amplifiers (PAs) and DPD linearizers with several free-parameters to maximize power efficiency while meeting the linearity specifications. One of the essential parts of unmanned aerial vehicles (UAV) is the avionics, being the radio control one of the earliest avionics present in the UAV. Unlike the control signal, for transferring user data (such as images, video, etc.) real-time from the drone to the ground station, large transmission rates are required. The PA is a key element in the transmitter chain to guarantee the data transmission (video, photo, etc.) over a long range from the ground station. The more linear output power, the better the coverage or alternatively, with the same coverage, better SNR allows the use of high-order modulation schemes and thus higher transmission rates are achieved. In the context of UAV wireless communications, the power consumption, size and weight of the payload is of significant importance. Therefore, the PA design has to take into account the compromise among bandwidth, output power, linearity and power efficiency (very critical in battery-supplied devices). The PA can be designed to maximize its power efficiency or its linearity, but not both. Therefore, a way to deal with this inherent trade-off is to design high efficient amplification topologies and let the PA linearizers take care of the linearity requirements. Among the linearizers, DPD linearization is the preferred solution to both academia and industry, for its high flexibility and linearization performance. In order to save as many computational and power resources as possible, the implementation of an open-loop DPD results a very attractive solution for UAV applications. This thesis contributes to the PA linearization, especially on off-line training for open-loop DPD, by presenting two different methods for reducing the design and operating costs of an open-loop DPD, based on the analysis of the DPD function. The first method focuses on the input domain analysis, proposing mesh-selecting (MeS) methods to accurately select the proper samples for a computationally efficient DPD parameter estimation. Focusing in the MeS method with better performance, the memory I-Q MeS method is combined with feature extraction dimensionality reduction technique to allow a computational complexity reduction in the identification subsystem by a factor of 65, in comparison to using the classical QR-LS solver and consecutive samples selection. In addition, the memory I-Q MeS method has been proved to be of crucial interest when training artificial neural networks (ANN) for DPD purposes, by significantly reducing the ANN training time. The second method involves the use of machine learning techniques in the DPD design procedure to enlarge the capacity of the DPD algorithm when considering a high number of free parameters to tune. On the one hand, the adaLIPO global optimization algorithm is used to find the best parameter configuration of a generalized memory polynomial behavioral model for DPD. On the other hand, a methodology to conduct a global optimization search is proposed to find the optimum values of a set of key circuit and system level parameters, that properly combined with DPD linearization and crest factor reduction techniques, can exploit at best dual-input PAs in terms of maximizing power efficiency along wide bandwidths while being compliant with the linearity specifications. The advantages of these proposed techniques have been validated through experimental tests and the obtained results are analyzed and discussed along this thesis.Aquesta tesi doctoral proporciona unes pautes per al disseny de linealitzadors basats en predistorsió digital (DPD) des de diverses perspectives: i) millorar el rendiment del DPD en llaç obert, ii) proporcionar robustesa i reduir la complexitat computacional del subsistema d'identificació de paràmetres i, iii) incorporació de tècniques d'aprenentatge automàtic per afavorir l'auto-ajustament d'amplificadors de potència (PAs) i linealitzadors DPD amb diversos graus de llibertat per poder maximitzar l’eficiència energètica i al mateix temps acomplir amb les especificacions de linealitat. Una de les parts essencials dels vehicles aeris no tripulats (UAV) _es l’aviònica, sent el radiocontrol un dels primers sistemes presents als UAV. Per transferir dades d'usuari (com ara imatges, vídeo, etc.) en temps real des del dron a l’estació terrestre, es requereixen taxes de transmissió grans. El PA _es un element clau de la cadena del transmissor per poder garantir la transmissió de dades a grans distàncies de l’estació terrestre. A major potència de sortida, més cobertura o, alternativament, amb la mateixa cobertura, millor relació senyal-soroll (SNR) la qual cosa permet l’ús d'esquemes de modulació d'ordres superiors i, per tant, aconseguir velocitats de transmissió més altes. En el context de les comunicacions sense fils en UAVs, el consum de potència, la mida i el pes de la càrrega útil són de vital importància. Per tant, el disseny del PA ha de tenir en compte el compromís entre ample de banda, potència de sortida, linealitat i eficiència energètica (molt crític en dispositius alimentats amb bateries). El PA es pot dissenyar per maximitzar la seva eficiència energètica o la seva linealitat, però no totes dues. Per tant, per afrontar aquest compromís s'utilitzen topologies amplificadores d'alta eficiència i es deixa que el linealitzador s'encarregui de garantir els nivells necessaris de linealitat. Entre els linealitzadors, la linealització DPD és la solució preferida tant per al món acadèmic com per a la indústria, per la seva alta flexibilitat i rendiment. Per tal d'estalviar tant recursos computacionals com consum de potència, la implementació d'un DPD en lla_c obert resulta una solució molt atractiva per a les aplicacions UAV. Aquesta tesi contribueix a la linealització del PA, especialment a l'entrenament fora de línia de linealitzadors DPD en llaç obert, presentant dos mètodes diferents per reduir el cost computacional i augmentar la fiabilitat dels DPDs en llaç obert. El primer mètode se centra en l’anàlisi de l’estadística del senyal d'entrada, proposant mètodes de selecció de malla (MeS) per seleccionar les mostres més significatives per a una estimació computacionalment eficient dels paràmetres del DPD. El mètode proposat IQ MeS amb memòria es pot combinar amb tècniques de reducció del model del DPD i d'aquesta manera poder aconseguir una reducció de la complexitat computacional en el subsistema d’identificació per un factor de 65, en comparació amb l’ús de l'algoritme clàssic QR-LS i selecció de mostres d'entrenament consecutives. El segon mètode consisteix en l’ús de tècniques d'aprenentatge automàtic pel disseny del DPD quan es considera un gran nombre de graus de llibertat (paràmetres) per sintonitzar. D'una banda, l'algorisme d’optimització global adaLIPO s'utilitza per trobar la millor configuració de paràmetres d'un model polinomial amb memòria generalitzat per a DPD. D'altra banda, es proposa una estratègia per l’optimització global d'un conjunt de paràmetres clau per al disseny a nivell de circuit i sistema, que combinats amb linealització DPD i les tècniques de reducció del factor de cresta, poden maximitzar l’eficiència de PAs d'entrada dual de gran ample de banda, alhora que compleixen les especificacions de linealitat. Els avantatges d'aquestes tècniques proposades s'han validat mitjançant proves experimentals i els resultats obtinguts s'analitzen i es discuteixen al llarg d'aquesta tesi

    Blocker Tolerant Radio Architectures

    Get PDF
    Future radio platforms have to be inexpensive and deal with a variety of co- existence issues. The technology trend during the last few years is towards system- on-chip (SoC) that is able to process multiple standards re-using most of the digital resources. A major bottle-neck to this approach is the co-existence of these standards operating at different frequency bands that are hitting the receiver front-end. So the current research is focused on the power, area and performance optimization of various circuit building blocks of a radio for current and incoming standards. Firstly, a linearization technique for low noise amplifiers (LNAs) called, Robust Derivative Superposition (RDS) method is proposed. RDS technique is insensitive to Process Voltage and Temperature (P.V.T.) variations and is validated with two low noise transconductance amplifier (LNTA) designs in 0.18µm CMOS technology. Measurement results from 5 dies of a resistive terminated LNTA shows that the pro- posed method improves IM3 over 20dB for input power up to -18dBm, and improves IIP_(3) by 10dB. A 2V inductor-less broadband 0.3 to 2.8GHz balun-LNTA employing the proposed RDS linearization technique was designed and measured. It achieves noise figure of 6.5dB, IIP3 of 16.8dBm, and P1dB of 0.5dBm having a power consumption of 14.2mW. The balun LNTA occupies an active area of 0.06mm2. Secondly, the design of two high linearity, inductor-less, broadband LNTAs employing noise and distortion cancellation techniques is presented. Main design issues and the performance trade-offs of the circuits are discussed. In the fully differential architecture, the first LNTA covers 0.1-2GHz bandwidth and achieves a minimum noise figure (NFmin) of 3dB, IIP_(3) of 10dBm and a P_(1dB) of 0dBm while dissipating 30.2mW. The 2^(nd) low power bulk driven LNTA with 16mW power consumption achieves NFmin of 3.4dB, IIP3 of 11dBm and 0.1-3GHz bandwidth. Each LNTA occupy an active area of 0.06mm2 in 45nm CMOS. Thirdly, a continuous-time low-pass ∆ΣADC equipped with design techniques to provide robustness against loop saturation due to blockers is presented. Loop over- load detection and correction is employed to improve the ADC’s tolerance to blockers; a fast overload detector activates the input attenuator, maintaining the ADC in linear operation. To further improve ADC’s blocker tolerance, a minimally-invasive integrated low-pass filter that reduces the most critical adjacent/alternate channel blockers is implemented. An ADC prototype is implemented in a 90nm CMOS technology and experimentally it achieves 69dB dynamic range over a 20MHz bandwidth with a sampling frequency of 500MHz and 17.1mW of power consumption. The alternate channel blocker tolerance at the most critical frequency is as high as -5.5dBFS while the conventional feed-forward modulator becomes unstable at -23.5dBFS of blocker power. The proposed blocker rejection techniques are minimally-invasive and take less than 0.3µsec to settle after a strong agile blocker appears. Finally, a new radio partitioning methodology that gives robust analog and mixed signal radio development in scaled technology for SoC integration, and the co-design of RF FEM-antenna system is presented. Based on the proposed methodology, a CMOS RF front-end module (FEM) with power amplifier (PA), LNA and transmit/receive switch, co-designed with antenna is implemented. The RF FEM circuit is implemented in a 32nm CMOS technology. Post extracted simulations show a noise figure < 2.5dB, S_(21) of 14dB, IIP3 of 7dBm and P1dB of -8dBm for the receiver. Total power consumption of the receiver is 11.8mW from a 1V supply. On the trans- mitter side, PA achieves peak RF output power of 22.34dBm with peak power added efficiency (PAE) of 65% and PAE of 33% with linearization at -6dB power back off. Simulations show an efficiency of 80% for the miniaturized dipole antenna

    Design and implementation of an ETSI-SDR OFDM transmitter with power amplifier linearizer

    Get PDF
    Satellite radio has attained great popularity because of its wide range of geographical coverage and high signal quality as compared to the terrestrial broadcasts. Most Satellite Digital Radio (SDR) based systems favor multi-carrier transmission schemes, especially, orthogonal frequency division multiplexing (OFDM) transmission because of high data transfer rate and spectral efficiency. It is a challenging task to find a suitable platform that supports fast data rates and superior processing capabilities required for the development and deployment of the new SDR standards. Field programmable gate array (FPGA) devices have the potential to become suitable development platform for such standards. Another challenging factor in SDR systems is the distortion of variable envelope signals used in OFDM transmission by the nonlinear RF power amplifiers (PA) used in the base station transmitters. An attractive option is to use a linearizer that would compensate for the nonlinear effects of the PA. In this research, an OFDM transmitter, according to European Telecommunications Standard Institute (ETSI) SDR Technical Specifications 2007-2008, was designed and implemented on a low-cost Xilinx FPGA platform. A weakly nonlinear PA, operating in the L-band SDR frequency (1.450-1.490GHz), was used for signal transmission. An FPGA-based, low-cost, adaptive linearizer was designed and implemented based on the digital predistortion (DPD) reference design from Xilinx, to correct the distortion effects of the PA on the transmitted signal

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (ΣΔ) modulators (ΣΔMs) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order ΣΔM, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 μW, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient ΣΔM using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuit’s sensitivity to the circuit components’ variations. This continuous-time, 2-1 MASH ΣΔM has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The ΣΔM achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the author’s knowledge the circuit achieves the lowest Walden FOMW for ΣΔMs operating at signal bandwidth from 5 MHz to 50 MHz reported to date
    • …
    corecore