64 research outputs found

    Cost-effective ROADM design to maximize the traffic load capacity of u-DWDM coherent metro-access networks

    Get PDF
    The current constant growing in traffic demands caused by the popularization of cloud services, mobile and social networks is requiring architectural changes at the underlying networks so as to provide a more highly dynamic connectivity. Cost-effective and energy efficient solutions are also required in flexible network subsystems in order to make available future sustainable networks. In this context, a novel cost-effective and energy-efficient solution DWDM ROADM (D-ROADM) node design has been recently considered to enable optical Metro-Access networks convergence. In this paper, we assess the D-ROADM capabilities in a dynamic ultra-Dense Wavelength Multiplexing (u-DWDM) coherent Ring Network scenario. In particular, the metric Blocking Bandwidth Probability (BBP) vs. Traffic Load Capacity (TLC) has been considered. Our numerical evaluations show that the performance penalty of cost-effective D-ROADM based networks could be reduced to 35% for 62.5GHz DWDM channels when compared to WSS-based ROADMsPeer ReviewedPostprint (author's final draft

    Physical Layer Aware Optical Networks

    Get PDF
    This thesis describes novel contributions in the field of physical layer aware optical networks. IP traffic increase and revenue compression in the Telecom industry is putting a lot of pressure on the optical community to develop novel solutions that must both increase total capacity while being cost effective. This requirement is pushing operators towards network disaggregation, where optical network infrastructure is built by mix and match different physical layer technologies from different vendors. In such a novel context, every equipment and transmission technique at the physical layer impacts the overall network behavior. Hence, methods giving quantitative evaluations of individual merit of physical layer equipment at network level are a firm request during network design phases as well as during network lifetime. Therefore, physical layer awareness in network design and operation is fundamental to fairly assess the potentialities, and exploit the capabilities of different technologies. From this perspective, propagation impairments modeling is essential. In this work propagation impairments in transparent optical networks are summarized, with a special focus on nonlinear effects. The Gaussian Noise model is reviewed, then extended for wideband scenarios. To do so, the impact of polarization mode dispersion on nonlinear interference (NLI) generation is assessed for the first time through simulation, showing its negligible impact on NLI generation. Thanks to this result, the Gaussian Noise model is generalized to assess the impact of space and frequency amplitude variations along the fiber, mainly due to stimulated Raman scattering, on NLI generation. The proposed Generalized GN (GGN) model is experimentally validated on a setup with commercial linecards, compared with other modeling options, and an example of application is shown. Then, network-level power optimization strategies are discussed, and the Locally Optimization Global Optimization (LOGO) approach reviewed. After that, a novel framework of analysis for optical networks that leverages detailed propagation impairment modeling called the Statistical Network Assessment Process (SNAP) is presented. SNAP is motivated by the need of having a general framework to assess the impact of different physical layer technologies on network performance, without relying on rigid optimization approaches, that are not well-suited for technology comparison. Several examples of applications of SNAP are given, including comparisons of transceivers, amplifiers and node technologies. SNAP is also used to highlight topological bottlenecks in progressively loaded network scenarios and to derive possible solutions for them. The final work presented in this thesis is related to the implementation of a vendor agnostic quality of transmission estimator for multi-vendor optical networks developed in the context of the Physical Simulation Environment group of the Telecom Infra Project. The implementation of a module based on the GN model is briefly described, then results of a multi-vendor experimental validation performed in collaboration with Microsoft are shown

    Optimization of flexible spectrum in optical transport networks

    Get PDF
    The ever-increasing demand for broadband services by end-user devices utilising 3G/4G/LTE and the projected 5G in the last mile will require sustaining broadband supply from fibre-linked terminals. The eventual outcome of the high demand for broadband is strained optical and electronic devices. The backbone optical fibre transport systems and techniques such as dense wavelength division multiplexing (DWDM), higher modulation formats, coherent detection and signal amplification have increased both fibre capacity and spectrum efficiency. A major challenge to fibre capacity and spectrum efficiency is fibre-faults and optical impairments, network management, routing and wavelength assignment (RWA). In this study, DWDM and flexible spectrum techniques such as wavelength assignment and adjustment, wavelength conversion and switching, optical add and drop multiplexing (OADM) and bitrate variable transmission have been experimentally optimized in a laboratory testbed for short- and long-haul optical fibre networks. This work starts by experimentally optimising different transmitters, fibre-types and receivers suitable for implementing cost effective and energy efficient flexible spectrum networks. Vertical cavity surface-emitting lasers (VCSELs) and distributed feedback (DFB) lasers have been studied to provide up to 10 Gb/s per channel in 1310 nm and 1550 nm transmission windows. VCSELs provide wavelength assignment and adjustment. This work utilises the non-return-to-zero (NRZ) on-off keying (OOK) modulation technique and direct detection due to their cost and simplicity. By using positive intrinsic negative (PIN) photo-receivers with error-free BER sensitivity of -18±1 dBm at the acceptable 10-9-bit error rate (BER) threshold level, unamplified transmission distances between 6 km and 76 km have been demonstrated using G.652 and G.655 single mode fibres (SMFs). For the first time, an all optical VCSEL to VCSEL wavelength conversion, switching, transmission at the 1550 nm window and BER evaluation of a NRZ data signal is experimentally demonstrated. With VCSEL wavelength conversion and switching, wavelength adjustments to a spectrum width of 4.8 nm (600 GHz) can be achieved to provide alternative routes to signals when fibre-cuts and wavelength collision occurs therefore enhancing signal continuity. This work also demonstrates a technique of removing and adding a wavelength in a bundle of DWDM and flexible channels using an OADM. This has been implemented using a VCSEL and a fibre Bragg grating (FBG) providing a wavelength isolation ratio of 31.4 dB and ~0.3 add/drop penalty of 8.5 Gb/s signal. As a result, an OADM improves spectrum efficiency by offering wavelength re-use. Optical impairments such as crosstalk, chromatic dispersion (CD) and effects of polarization mode dispersion (PMD) have been experimentally investigated and mitigated. This work showed that crosstalk penalty increased with fibre-length, bitrate, interfering signal power and reduced channel spacing and as a result, a crosstalk-penalty trade-off is required. Effects of CD on a transmitted 10 Gb/s signal were also investigated and its mitigation techniques used to increase the fibre-reach. This work uses the negative dispersion fibres to mitigate the accumulated dispersion over the distance of transmission. A 5 dB sensitivity improvement is reported for an unamplified 76 km using DFB transmitters and combination of NZDSF true-wave reduced slope (TW-RS) and submarine reduced slope (TW-SRS) with + and – dispersion coefficients respectively. We have also demonstrated up to 52 km 10 Gb/s per channel VCSEL-based transmission and reduced net dispersion. Experimental demonstration of forward Raman amplification has achieved a 4.7 dB on-off gain distributed over a 4.8 nm spectral width and a 1.7 dB improvement of receiver sensitivity in Raman-aided 10 Gb/s per wavelength VCSEL transmission. Finally, 4.25-10 Gb/s PON-based point to point (P2P) and point to multipoint (P2MP) broadcast transmission have been experimentally demonstrated. A 10 Gb/s with a 1:8 passive splitter incurred a 3.7 dB penalty for a 24.7 km fibre-link. In summary, this work has demonstrated cost effective and energy efficient potential flexible spectrum techniques for high speed signal transmission. With the optimized network parameters, flexible spectrum is therefore relevant in short-reach, metro-access and long-haul applications for national broadband networks and the Square Kilometre Array (SKA) fibre-based signal and data transmission

    Experimental Demonstration of Partially Disaggregated Optical Network Control Using the Physical Layer Digital Twin

    Get PDF
    Optical communications and networking are fast becoming the solution to support ever-increasing data traffic across all segments of the network, expanding from core/metro networks to 5G/6G front-hauling. Therefore, optical networks need to evolve towards an efficient exploitation of the infrastructure by overcoming the closed and aggregated paradigm, to enable apparatus sharing together with the slicing and separation of the optical data plane from the optical control. In addition to the advantages in terms of efficiency and cost reduction, this evolution will increase network reliability, also allowing for a fine trade-off between robustness and maximum capacity exploitation. In this work, an optical network architecture is presented based on the physical layer digital twin of the optical transport used within a multi-layer hierarchical control operated by an intent-based network operating system. An experimental proof of concept is performed on a three-node network including up to 1000 km optical transmission, open re-configurable optical add & drop multiplexers (ROADMs) and whitebox transponders hosting pluggable multirate transceivers. The proposed solution is based on GNPy as the optical physical layer digital twin and ONOS as intent-based network operating system. The reliability of the optical control decoupled by the data plane functioning is experimentally demonstrated exploiting GNPy as open lightpath computation engine and software optical amplifier models derived from the component characterization. Besides the lightpath deployment exploiting the modulation format evaluation given a generic traffic request, the architecture reliability is tested mimicking the use case of an automatic failure recovery from a fiber cut

    Transparent heterogeneous terrestrial optical communication networks with phase modulated signals

    Get PDF
    This thesis presents a large scale numerical investigation of heterogeneous terrestrial optical communications systems and the upgrade of fourth generation terrestrial core to metro legacy interconnects to fifth generation transmission system technologies. Retrofitting (without changing infrastructure) is considered for commercial applications. ROADM are crucial enabling components for future core network developments however their re-routing ability means signals can be switched mid-link onto sub-optimally configured paths which raises new challenges in network management. System performance is determined by a trade-off between nonlinear impairments and noise, where the nonlinear signal distortions depend critically on deployed dispersion maps. This thesis presents a comprehensive numerical investigation into the implementation of phase modulated signals in transparent reconfigurable wavelength division multiplexed fibre optic communication terrestrial heterogeneous networks. A key issue during system upgrades is whether differential phase encoded modulation formats are compatible with the cost optimised dispersion schemes employed in current 10 Gb/s systems. We explore how robust transmission is to inevitable variations in the dispersion mapping and how large the margins are when suboptimal dispersion management is applied. We show that a DPSK transmission system is not drastically affected by reconfiguration from periodic dispersion management to lumped dispersion mapping. A novel DPSK dispersion map optimisation methodology which reduces drastically the optimisation parameter space and the many ways to deploy dispersion maps is also presented. This alleviates strenuous computing requirements in optimisation calculations. This thesis provides a very efficient and robust way to identify high performing lumped dispersion compensating schemes for use in heterogeneous RZ-DPSK terrestrial meshed networks with ROADMs. A modified search algorithm which further reduces this number of configuration combinations is also presented. The results of an investigation of the feasibility of detouring signals locally in multi-path heterogeneous ring networks is also presented

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Deploying SDN architecture in Open Optical Transport Networks

    Get PDF
    Pro udrženı́ tempa s rostoucı́mi požadavky na přenosovou rychlost, latenci a bezpečnost je nutné zvážit současnou koncepci řı́zenı́ sı́tı́. Software-Defined Networking (SDN) je jedno z možných řešenı́, ke kterému telekomunikačnı́ průmysl směruje. Tato práce představuje současný stav Software-Defined Networking a zaměřuje se na vybraná open-source řešenı́ v oblasti SDN kontrolerů, jako je ONOS či OpenDaylight. Hlavnı́m cı́lem této části práce je vysvětlit, jak může SDN pomoci vyřešit rostoucı́ požadavky na rozšı́řenı́ automatizace v otevřených optických sı́tı́ch. Praktická část této práce je rozdělená do dvou oblastı́. V rámci prvnı́ oblasti jsem se zabýval rozšı́řenı́m funkčnosti SDN kontroleru pro umožněnı́ konfigurace a řı́zenı́ optických komunikačnı́ch zařı́zenı́. Hlavnı́m přı́nosem je implementace nových funkcionalit SDN driveru pro Nokia 1830 PSS (ROADM) a rozšı́řenı́ funkcionality driveru pro Nokia 1830 PSI-2T (optický transpondér). Ve druhé části práce jsem se zabýval problematikou korelace alarmů v otevřených optických sı́tı́ch. Výsledkem je funkce pro korelaci alarmů ve formě SDN aplikace, kterou jsem dále otestoval na emulovaných optických zařı́zenı́ch pro prokázánı́ funkčnosti celého konceptu.With the rising demands on the network throughput, latency and security, legacy control networking concepts should be reconsidered. Software-Defined Networking (SDN) is one of the possible solutions, to which telecommunication industry is moving. This work presents current state-of-the-art in Software-Defined Networking and focuses on some open-source solutions of SDN controllers, like ONOS and OpenDaylight. Main focus is to understand how SDN can help to solve increasing demand for broader automation in Optical Transport Networks. The practical section is divided in two parts. Within the first part I focused on extending functionality of SDN controller to facilitate more efficient configuration and control of optical network devices. Main contribution was to implement additional features to SDN drivers for Nokia 1830 PSS (ROADM) and extend functionality of Nokia 1830 PSI-2T (Optical Transponder) driver. Second part is dedicated to the Alarm Correlation problematic in open optical networks. We designed, developed an Alarm Correlation function as a SDN application then we tested it on emulated optical devices to prove the concept

    Cognition procedures for optical network design and optimization

    Get PDF
    Telecom carriers have to adapt their networks to accommodate a growing volume of users, services and traffic. Thus, they have to search a continuous maximization of efficiency and reduction in costs. This thesis identifies an opportunity to accomplish this aim by reducing operation margins applied in the optical link power budgets, in optical transport networks. From an operational perspective, margin reduction will lead to a fall of the required investments on transceivers in the whole transport network. Based on how human learn, a cognitive approach is introduced and evaluated to reduce the System Margin. This operation margin takes into account, among other constraints, the long-term ageing process of the network infrastructure. Telecom operators normally apply a conservative and fixed value established during the design and commissioning phases. The cognitive approach proposes a flexible and variable value, adapted to the network conditions. It is based on the case-based reasoning machine learning technique, which has been further developped. Novel learning schemes are presented and evaluated. The cognition solution proposes a new lower launched power guaranteeing the quality of service of the new incoming lightpath. It will lead to provide transmission power savings with appropiate success rates when applying the cognitive approach. To this end, it relies on transmission values applied in past and successful similar network situations. They are stored in a knowledge base or memory of the system. Moreover, regarding the knowledge base, a static and a dynamic approaches have been developped and presented. In the last case, five new dynamic learning algorithms are presented and evaluated. In the static context, savings in transmission power up to 48% are achieved and the resulting System Margin reduction. Furthermore, the dynamic renewal of the knowledge base improves mean savings in launched power up to 7% or 18% with respect to the static approach, depending on the path. Thus, the cognitive approach appears as useful to be applied in commercial optical transport networks with the aim of reducing the operational System Margin.Los operadores de telecomunicaciones tienen que adaptar constantemente sus redes para acoger el volumen creciente de usuarios, servicios y tráfico asociado. Han de buscar constantemente una maximización de la eficiencia en la operación, así como una reducción continua de costes. Esta tesis identifica una oportunidad para alcanzar este objetivo por medio de la reducción de los márgenes operacionales aplicados en los balances de potencia en una red óptica de transporte. Desde un punto de vista operacional, la reducción de márgenes operativos conlleva una optimización de las inversiones requeridas en transceivers, entre otros puntos. Así, basándonos en cómo aprendemos los humanos, se introduce y evalúa una aproximación cognitiva para reducir el System Margin. Este margen operativo se introduce en el balance de potencia, entre otros puntos, para compensar el proceso de envejecimiento a largo plazo de la infraestrcutura de red. Los operadores emplean normalmente un valor fijo y conservador, que se establece durante el diseño y comisionado de la red. Nuestra aproximación cognitiva propone en su lugar un valor flexible y variable, que se adapta a las condiciones de red actuales. Se basa en la técnica de machine learning conocida como case-based reasoning, que se desarrolla más profundamente. Se han propuesto y evaluado nuevos esquemas de aprendizaje. La solución cognitiva propone un nuevo valor más bajo de potencia transmitida, que garantiza la calidad de servicio requerida por el nuevo lighpath entrante. La propuesta logra ahorros en la potencia transmitida, a la vez que garantiza una tasa de éxito correcta cuando aplicamos esta solución cognitiva. Para ello, se apoya en la potencia transmitida en situaciones pasadas y similares a la actual, donde se transmitió una potencia que aseguró el correcto establecimiento del lighpath. Esta información se almacena en una base de conocimiento. En este sentido, se han desarrollado y presentado dos aproximaciones: una base de conocimiento estática y otra dinámica. En el caso del contexto dinámico, se han desarrollado y evaluado cinco nuevos algoritmos de aprendizaje. En el contexto estático, se consigue un ahorro en potencia de hasta un 48%, con la correspondiente reducción del System Margin. En el contexto dinámico, la actualización online de la base de conocimiento proporciona adicionalmente una ganancia en potencia transmitida con respecto a la aproximación estática de hasta un 7% o un 18%, dependiendo de la ruta. De esta forma se comprueba que la propuesta cognitiva se revela como útil y aplicable sobre una red óptica de transporte comercial con el objetivo de reducir el margen operativo conocido como System Margin
    corecore