350 research outputs found

    Including network routers in forensic investigation

    No full text
    Network forensics concerns the identification and preservation of evidence from an event that has occurred or is likely to occur. The scope of network forensics encompasses the networks, systems and devices associated with the physical and human networks. In this paper we are assessing the forensic potential of a router in investigations. A single router is taken as a case study and analysed to determine its forensic value from both static and live investigation perspectives. In the live investigation, tests using steps from two to seven routers were used to establish benchmark expectations for network variations. We find that the router has many attributes that make it a repository and a site for evidence collection. The implications of this research are for investigators and the inclusion of routers in network forensic investigations

    Including Network Routers In Forensic Investigation

    Get PDF
    Network forensics concerns the identification and preservation of evidence from an event that has occurred or is likely to occur. The scope of network forensics encompasses the networks, systems and devices associated with the physical and human networks. In this paper we are assessing the forensic potential of a router in investigations. A single router is taken as a case study and analysed to determine its forensic value from both static and live investigation perspectives. In the live investigation, tests using steps from two to seven routers were used to establish benchmark expectations for network variations. We find that the router has many attributes that make it a repository and a site for evidence collection. The implications of this research are for investigators and the inclusion of routers in network forensic investigations

    CGC monitor: A vetting system for the DARPA cyber grand challenge

    Get PDF
    The article of record as published may be found at https://doi.org/10.1016/j.diin.2018.04.016In PressThe CGC Monitor is available at https://github.com/mfthomps/ cgc-monitor. Analysis results from CFE, generated by the monitor, are at https://github.com/mfthomps/CGC-Analysis.The DARPA Cyber Grand Challenge (CGC) pit autonomous machines against one another in a battle to discover, mitigate, and take advantage of software vulnerabilities. The competitors repeatedly formulated and submitted binary software for execution against opponents, and to mitigate attacks mounted by opponents. The US Government sought confidence that competitors legitimately won their rewards (a prize pool of up to $6.75 million USD), and competitors deserved evidence that all parties operated in accordance with the rules, which prohibited attempts to subvert the competition infrastructure. To support those goals, we developed an analysis system to vet competitor software submissions destined for execution on the competition infrastructure, the classic situation of running untrusted software. In this work, we describe the design and implementation of this vetting system, as well as results gathered in deployment of the system as part of the CGC competition. The analysis system is imple- mented upon a high-fidelity full-system simulator requiring no modifications to the monitored operating system. We used this system to vet software submitted during the CGC Qualifying Event, and the CGC Final Event. The overwhelming majority of the vetting occurred in an automated fashion, with the system automatically monitoring the full x86-based system to detection corruption of operating system execution paths and data structures. However, the vetting system also facilitates investigation of any execution deemed suspicious by the automated process (or indeed any analysis required to answer queries related to the competition). An analyst may replay any software interaction using an IDA Pro plug-in, which utilizes the IDA debugger client to execute the session in reverse. In post-mortem analysis, we found no evidence of attempted infrastructure subversion and further conclude that of the 20 vulnerable software services exploited in the CGC Final Event, half were exploited in ways unintended by the service authors. Six services were exploited due to vulnerabilities accidentally included by the authors, while an additional four were exploited via the author-intended vulnerability, but via an unanticipated path.This work was supported in part by the Defense Advanced Research Projects AgencyAir Force award number FA8750- 12-D-0005Approved for public release; distribution is unlimited

    Wide spectrum attribution: Using deception for attribution intelligence in cyber attacks

    Get PDF
    Modern cyber attacks have evolved considerably. The skill level required to conduct a cyber attack is low. Computing power is cheap, targets are diverse and plentiful. Point-and-click crimeware kits are widely circulated in the underground economy, while source code for sophisticated malware such as Stuxnet is available for all to download and repurpose. Despite decades of research into defensive techniques, such as firewalls, intrusion detection systems, anti-virus, code auditing, etc, the quantity of successful cyber attacks continues to increase, as does the number of vulnerabilities identified. Measures to identify perpetrators, known as attribution, have existed for as long as there have been cyber attacks. The most actively researched technical attribution techniques involve the marking and logging of network packets. These techniques are performed by network devices along the packet journey, which most often requires modification of existing router hardware and/or software, or the inclusion of additional devices. These modifications require wide-scale infrastructure changes that are not only complex and costly, but invoke legal, ethical and governance issues. The usefulness of these techniques is also often questioned, as attack actors use multiple stepping stones, often innocent systems that have been compromised, to mask the true source. As such, this thesis identifies that no publicly known previous work has been deployed on a wide-scale basis in the Internet infrastructure. This research investigates the use of an often overlooked tool for attribution: cyber de- ception. The main contribution of this work is a significant advancement in the field of deception and honeypots as technical attribution techniques. Specifically, the design and implementation of two novel honeypot approaches; i) Deception Inside Credential Engine (DICE), that uses policy and honeytokens to identify adversaries returning from different origins and ii) Adaptive Honeynet Framework (AHFW), an introspection and adaptive honeynet framework that uses actor-dependent triggers to modify the honeynet envi- ronment, to engage the adversary, increasing the quantity and diversity of interactions. The two approaches are based on a systematic review of the technical attribution litera- ture that was used to derive a set of requirements for honeypots as technical attribution techniques. Both approaches lead the way for further research in this field

    The Development of Digital Forensics Workforce Competency on the Example of Estonian Defence League

    Get PDF
    03.07.2014 kehtestati Vabariigi Valitsuse määrus nr. 108, mis reguleerib Kaitseliidu kaasamise tingimusi ja korda küberjulgeoleku tagamisel. Seega võivad Kaitseliidu küberkaitse üksuse (KL KKÜ edaspidi KKÜ) kutsuda olukorda toetama erinevad asutused: näiteks Riigi Infosüsteemide amet (RIA), infosüsteemi järelevalveasutus või kaitseministeerium või selle valitsemisala ametiasutused oma ülesannete raames. KKÜ-d saab kaasata info- ja sidetehnoloogia infrastruktuuri järjepidevuse tagamisel, turvaintsidentide kontrollimisel ja lahendamisel, rakendades nii aktiivseid kui passiivseid meetmeid. KKÜ ülesannete kaardistamisel täheldati, et KKÜ partnerasutused / organisatsioonid ei ole kaardistanud oma spetsialistide olemasolevaid pädevusi ja sellele lisaks puudub ülevaade digitaalse ekspertiisi kogukonnas vajaolevatest pädevustest. Leitut arvesse võttes seati ülesandeks vajadustest ja piirangutest (võttes arvesse digitaalse ekspertiisi kogukonda kujundavaid standardeid) ülevaatliku pildi loomine, et töötada välja digitaalse ekspertiisi kompetentsipõhine raamistik, mis toetab KKÜ spetsialistide arendamist palkamisest pensionini. Selleks uurisime KKÜ ja nende olemasolevate koolitusprogrammide hetkeolukorda ning otsustasime milliseid omadusi peab edasise arengu tarbeks uurima ja kaaluma. Võrreldavate tulemuste saa-miseks ja eesmärgi täitmiseks pidi koostatav mudel olema suuteline lahendama 5-t järgnevat ülesannet: 1. Oskuste kaardistamine, 2. Eesmärkide seadmine ja ümberhindamine, 3. Koolituskava planeerimine, 4. Värbamisprotsessi kiirendamine ning 5. Spetsialistide kestva arengu soodustamine. Raamistiku väljatöötamiseks võeti aluseks National Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce Framework (NICE Framework) pädevusraamistik mida parendati digitaalse ekspertiisi spetsialistide, ja käesoleval juhul ka KKÜ, vajadusi silmas pidades. Täiendusi lisati nii tasemete, spetsialiseerumise kui ka ülesannete kirjelduste kujul. Parenduste lisamisel võeti arvesse töös tutvustatud digitaalse ekspertiisi piiranguid ja standardeid, mille lõpptulemusena esitati KKÜ-le Digitaalse Ekspertiisi Pädevuse ontoloogia, KKÜ struktuuri muudatuse ettepanek, soovitatavad õpetamisstrateegiad digitaalse ekspertiisi kasutamiseks (muudetud Bloomi taksonoomia tasemetega), uus digitaalse ekspertiisi standardi alajaotus – Mehitamata Süsteemide ekspertiis ja Digitaalse Ekspertiisi Pädevuse Mudeli Raamistik. Ülesannete ja oskuste loetelu koostati rahvusvaheliselt tunnustatud sertifitseerimis-organisatsioonide ja erialast pädevust pakkuvate õppekavade abil. Kavandatava mudeli hindamiseks kasutati mini-Delphi ehk Estimate-Talk-Estimate (ETE) tehnikat. Esialgne prognoos vajaduste ja prioriteetidega anti KKÜ partnerasutustele saamaks tehtud töö kohta ekspertarvamusi. Kogu tagasisidet silmas pidades tehti mudelisse korrektuurid ja KKÜ-le sai vormistatud ettepanek ühes edasise tööplaaniga. Üldiselt kirjeldab väljapakutud pädevusraamistik KKÜ spetsialistilt ooda-tavat pädevuse ulatust KKÜ-s, et suurendada nende rolli kiirreageerimisrühmana. Raamistik aitab määratleda digitaalse ekspertiisi eeldatavaid pädevusi ja võimekusi praktikas ning juhendab eksperte spetsialiseerumise valikul. Kavandatud mudeli juures on arvestatud pikaajalise mõjuga (palkamisest pensionini). Tulenevalt mudeli komplekssusest, on raamistikul pikk rakendusfaas – organisatsiooni arengule maksimaalse mõju saavutamiseks on prognoositud ajakava maksimaalselt 5 aastat. Antud ettepanekud on käesolevaks hetkeks KKÜ poolt heaks kiidetud ning planeeritud kava rakendati esmakordselt 2019 aasta aprillikuus.In 03.07.2014 Regulation No. 108 was introduced which regulates the conditions and pro-cedure of the involvement of the Estonian Defence League (EDL) Cyber Defence Unit (CDU) in ensuring cyber security. This means that EDL can be brought in by the Information System Authority, Ministry of Defence or the authorities of its area of government within the scope of either of their tasks e.g. ensuring the continuity of information and communication technology infrastructure and in handling and solving cyber security incidents while applying both active and passive measures. In January 2018 EDL CDU’s Digi-tal Evidence Handling Group had to be re-organized and, thus, presented a proposal for internal curriculum in order to further instruct Digital Evidence specialists. While describing the CDU's tasks, it was noted that the CDU's partner institutions / organizations have not mapped out their specialists’ current competencies. With this in mind, we set out to create a comprehensive list of needs and constraints (taking into account the community standards of DF) to develop a DF-based competence framework that supports the devel-opment of CDU professionals. Hence, we studied the current situation of CDU, their existing training program, and contemplated which features we need to consider and ex-plore for further development. In order to assemble comparable results and to achieve the goal the model had to be able to solve the 5 following tasks: 1. Competency mapping, 2. Goal setting and reassessment, 3. Scheduling the training plan, 4. Accelerating the recruitment process, and 5. Promoting the continuous development of professionals. The frame-work was developed on the basis of the National Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce Framework (NICE Framework), which was revised to meet the needs of DF specialists, including EDL CDU. Additions were supplemented in terms of levels, specialization, and job descriptions. The proposals included the DF limitations and standards introduced in the work, which ultimately resulted in a proposal for a Digital Forensics Competency ontology, EDL CDU structure change, Suggested Instruc-tional Strategies for Digital Forensics Use With Each Level of revised Bloom's Taxonomy, a new DF standard subdivision – Unmanned Systems Forensics, and Digital Forensic Competency Model Framework. The list of tasks and skills were compiled from international certification distribution organizations and curricula, and their focus on DF Special-ist Competencies. Mini-Delphi or Estimate-Talk-Estimate (ETE) techniques were applied to evaluate the proposed model. An initial estimation of competencies and priorities were given to the EDL CDU partner institutions for expert advice and evaluation. Considering the feedback, improvements were made to the model and a proposal was put forward to the CDU with a future work plan. In general, the proposed competence framework describes the expected scope of competence of an DF specialist in the EDL CDU to enhance their role as a rapid response team. The framework helps in defining the expected compe-tencies and capabilities of digital forensics in practice and offers guidance to the experts in the choice of specialization. The proposed model takes into account the long-term effect (hire-to-retire). Due to the complexity of the model, the framework has a long implementation phase — the maximum time frame for achieving the full effect for the organization is expected to be 5 years. These proposals were approved by EDL CDU and the proposed plan was first launched in April 2019

    Detecting deceptive behaviour in the wild:text mining for online child protection in the presence of noisy and adversarial social media communications

    Get PDF
    A real-life application of text mining research “in the wild”, i.e. in online social media, differs from more general applications in that its defining characteristics are both domain and process dependent. This gives rise to a number of challenges of which contemporary research has only scratched the surface. More specifically, a text mining approach applied in the wild typically has no control over the dataset size. Hence, the system has to be robust towards limited data availability, a variable number of samples across users and a highly skewed dataset. Additionally, the quality of the data cannot be guaranteed. As a result, the approach needs to be tolerant to a certain degree of linguistic noise. Finally, it has to be robust towards deceptive behaviour or adversaries. This thesis examines the viability of a text mining approach for supporting cybercrime investigations pertaining to online child protection. The main contributions of this dissertation are as follows. A systematic study of different aspects of methodological design of a state-ofthe- art text mining approach is presented to assess its scalability towards a large, imbalanced and linguistically noisy social media dataset. In this framework, three key automatic text categorisation tasks are examined, namely the feasibility to (i) identify a social network user’s age group and gender based on textual information found in only one single message; (ii) aggregate predictions on the message level to the user level without neglecting potential clues of deception and detect false user profiles on social networks and (iii) identify child sexual abuse media among thousands of legal other media, including adult pornography, based on their filename. Finally, a novel approach is presented that combines age group predictions with advanced text clustering techniques and unsupervised learning to identify online child sex offenders’ grooming behaviour. The methodology presented in this thesis was extensively discussed with law enforcement to assess its forensic readiness. Additionally, each component was evaluated on actual child sex offender data. Despite the challenging characteristics of these text types, the results show high degrees of accuracy for false profile detection, identifying grooming behaviour and child sexual abuse media identification

    Proceedings of the Salford Postgraduate Annual Research Conference (SPARC) 2011

    Get PDF
    These proceedings bring together a selection of papers from the 2011 Salford Postgraduate Annual Research Conference(SPARC). It includes papers from PhD students in the arts and social sciences, business, computing, science and engineering, education, environment, built environment and health sciences. Contributions from Salford researchers are published here alongside papers from students at the Universities of Anglia Ruskin, Birmingham City, Chester,De Montfort, Exeter, Leeds, Liverpool, Liverpool John Moores and Manchester
    corecore