30,205 research outputs found

    The role of surface-based representations of shape in visual object recognition

    Get PDF
    This study contrasted the role of surfaces and volumetric shape primitives in three-dimensional object recognition. Observers (N�=�50) matched subsets of closed contour fragments, surfaces, or volumetric parts to whole novel objects during a whole�part matching task. Three factors were further manipulated: part viewpoint (either same or different between component parts and whole objects), surface occlusion (comparison parts contained either visible surfaces only, or a surface that was fully or partially occluded in the whole object), and target�distractor similarity. Similarity was varied in terms of systematic variation in nonaccidental (NAP) or metric (MP) properties of individual parts. Analysis of sensitivity (d�) showed a whole�part matching advantage for surface-based parts and volumes over closed contour fragments�but no benefit for volumetric parts over surfaces. We also found a performance cost in matching volumetric parts to wholes when the volumes showed surfaces that were occluded in the whole object. The same pattern was found for both same and different viewpoints, and regardless of target�distractor similarity. These findings challenge models in which recognition is mediated by volumetric part-based shape representations. Instead, we argue that the results are consistent with a surface-based model of high-level shape representation for recognition

    Word matching using single closed contours for indexing handwritten historical documents

    Get PDF
    Effective indexing is crucial for providing convenient access to scanned versions of large collections of historically valuable handwritten manuscripts. Since traditional handwriting recognizers based on optical character recognition (OCR) do not perform well on historical documents, recently a holistic word recognition approach has gained in popularity as an attractive and more straightforward solution (Lavrenko et al. in proc. document Image Analysis for Libraries (DIAL’04), pp. 278–287, 2004). Such techniques attempt to recognize words based on scalar and profile-based features extracted from whole word images. In this paper, we propose a new approach to holistic word recognition for historical handwritten manuscripts based on matching word contours instead of whole images or word profiles. The new method consists of robust extraction of closed word contours and the application of an elastic contour matching technique proposed originally for general shapes (Adamek and O’Connor in IEEE Trans Circuits Syst Video Technol 5:2004). We demonstrate that multiscale contour-based descriptors can effectively capture intrinsic word features avoiding any segmentation of words into smaller subunits. Our experiments show a recognition accuracy of 83%, which considerably exceeds the performance of other systems reported in the literature

    On expenditure functions

    Get PDF
    In this paper we present complete characterizations of the expenditure function for both utility representations and preference structures. Building upon these results, we also establish under minimal assumptions duality theorems for exıpenditure functions and utility representations, and for expenditure functions and preference structures. These results generalize previous work in this area; moreover, in the case of preferences structures they apply to non-completeı preorders

    Image-Dependent Spatial Shape-Error Concealment

    Get PDF
    Existing spatial shape-error concealment techniques are broadly based upon either parametric curves that exploit geometric information concerning a shape's contour or object shape statistics using a combination of Markov random fields and maximum a posteriori estimation. Both categories are to some extent, able to mask errors caused by information loss, provided the shape is considered independently of the image/video. They palpably however, do not afford the best solution in applications where shape is used as metadata to describe image and video content. This paper presents a novel image-dependent spatial shape-error concealment (ISEC) algorithm that uses both image and shape information by employing the established rubber-band contour detecting function, with the novel enhancement of automatically determining the optimal width of the band to achieve superior error concealment. Experimental results corroborate both qualitatively and numerically, the enhanced performance of the new ISEC strategy compared with established techniques

    An Overview of Rendering from Volume Data --- including Surface and Volume Rendering

    Get PDF
    Volume rendering is a title often ambiguously used in science. One meaning often quoted is: `to render any three volume dimensional data set'; however, within this categorisation `surface rendering'' is contained. Surface rendering is a technique for visualising a geometric representation of a surface from a three dimensional volume data set. A more correct definition of Volume Rendering would only incorporate the direct visualisation of volumes, without the use of intermediate surface geometry representations. Hence we state: `Volume Rendering is the Direct Visualisation of any three dimensional Volume data set; without the use of an intermediate geometric representation for isosurfaces'; `Surface Rendering is the Visualisation of a surface, from a geometric approximation of an isosurface, within a Volume data set'; where an isosurface is a surface formed from a cross connection of data points, within a volume, of equal value or density. This paper is an overview of both Surface Rendering and Volume Rendering techniques. Surface Rendering mainly consists of contouring lines over data points and triangulations between contours. Volume rendering methods consist of ray casting techniques that allow the ray to be cast from the viewing plane into the object and the transparency, opacity and colour calculated for each cell; the rays are often cast until an opaque object is `hit' or the ray exits the volume

    Precise localization for aerial inspection using augmented reality markers

    Get PDF
    The final publication is available at link.springer.comThis chapter is devoted to explaining a method for precise localization using augmented reality markers. This method can achieve precision of less of 5 mm in position at a distance of 0.7 m, using a visual mark of 17 mm × 17 mm, and it can be used by controller when the aerial robot is doing a manipulation task. The localization method is based on optimizing the alignment of deformable contours from textureless images working from the raw vertexes of the observed contour. The algorithm optimizes the alignment of the XOR area computed by means of computer graphics clipping techniques. The method can run at 25 frames per second.Peer ReviewedPostprint (author's final draft

    On expenditure functions.

    Get PDF
    In this paper we present complete characterizations of the expenditure function for both utility representations and preference structures. Building upon these results, we also establish under minimal assumptions duality theorems for exıpenditure functions and utility representations, and for expenditure functions and preference structures. These results generalize previous work in this area; moreover, in the case of preferences structures they apply to non-completeı preorders.Expenditure functions; Utility representations; Duality; Non-complete preorders;
    corecore