135 research outputs found

    Leveraging Cloud-based NFV and SDN Platform Towards Quality-Driven Next-Generation Mobile Networks

    Get PDF
    Network virtualization has become a key approach for Network Service Providers (NSPs) to mitigate the challenge of the continually increasing demands for network services. Tightly coupled with their software components, legacy network devices are difficult to upgrade or modify to meet the dynamically changing end-user needs. To virtualize their infrastructure and mitigate those challenges, NSPs have started to adopt Software Defined Networking (SDN) and Network Function Virtualization (NFV). To this end, this thesis addresses the challenges faced on the road of transforming the legacy networking infrastructure to a more dynamic and agile virtualized environment to meet the rapidly increasing demand for network services and serve as an enabler for key emerging technologies such as the Internet of Things (IoT) and 5G networking. The thesis considers different approaches and platforms to serve as an NFV/SDN based cloud applications while closely considering how such an environment deploys its virtualized services to optimize the network and reducing their costs. The thesis starts first by defining the standards of adopting microservices as architecture for NFV. Then, it focuses on the latency-aware deployment approach of virtual network functions (VNFs) forming service function chains (SFC) in a cloud environment. This approach ensures that NSPs still meet their strict quality of service and service level agreements while considering both functional and non-functional constraints of the NFV-based applications such as, delay, resource allocation, and intercorrelation between VNF instances. In addition, the thesis proposes a detailed approach on recovering and handling of those instances by optimizing the decision of migrating or re-instantiating the virtualized services upon a sudden event (failure/overload…). All the proposed approaches contribute to the orchestration of NFV applications to meet the requirements of the IoT and NGNs era

    Network Orchestration in Reliable 5G/NFV/SDN Infrastructures

    Get PDF
    In this paper, we elaborate an SDN orchestration solution aiming at the dynamic adaptation of service chain paths thereby addressing high-availability requirements of 5G applications. We present an SDN orchestrator that periodically monitors the availability of the network and, if necessary, promptly adapts service chain paths to recover from congestion events and to preserve network QoS performance of service data flows. A set of performance results are finally presented.This work has been partially supported by the EU H2020 5G Exchange (5GEx) innovation project (grant no. 671636) and by EU H2020 5G-Transformer Project (grant no. 761536

    Software-Defined Networks for Future Networks and Services: Main Technical Challenges and Business Implications

    Get PDF
    In 2013, the IEEE Future Directions Committee (FDC) formed an SDN work group to explore the amount of interest in forming an IEEE Software-Defined Network (SDN) Community. To this end, a Workshop on "SDN for Future Networks and Services" (SDN4FNS'13) was organized in Trento, Italy (Nov. 11th-13th 2013). Following the results of the workshop, in this paper, we have further analyzed scenarios, prior-art, state of standardization, and further discussed the main technical challenges and socio-economic aspects of SDN and virtualization in future networks and services. A number of research and development directions have been identified in this white paper, along with a comprehensive analysis of the technical feasibility and business availability of those fundamental technologies. A radical industry transition towards the "economy of information through softwarization" is expected in the near future

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives

    Network Function Virtualization Service Delivery In Future Internet

    Get PDF
    This dissertation investigates the Network Function Virtualization (NFV) service delivery problems in the future Internet. With the emerging Internet of everything, 5G communication and multi-access edge computing techniques, tremendous end-user devices are connected to the Internet. The massive quantity of end-user devices facilitates various services between the end-user devices and the cloud/edge servers. To improve the service quality and agility, NFV is applied. In NFV, the customer\u27s data from these services will go through multiple Service Functions (SFs) for processing or analysis. Unlike traditional point-to-point data transmission, a particular set of SFs and customized service requirements are needed to be applied to the customer\u27s traffic flow, which makes the traditional point-to-point data transmission methods not directly used. As the traditional point-to-point data transmission methods cannot be directly applied, there should be a body of novel mechanisms that effectively deliver the NFV services with customized~requirements. As a result, this dissertation proposes a series of mechanisms for delivering NFV services with diverse requirements. First, we study how to deliver the traditional NFV service with a provable boundary in unique function networks. Secondly, considering both forward and backward traffic, we investigate how to effectively deliver the NFV service when the SFs required in forward and backward traffic is not the same. Thirdly, we investigate how to efficiently deliver the NFV service when the required SFs have specific executing order constraints. We also provide detailed analysis and discussion for proposed mechanisms and validate their performance via extensive simulations. The results demonstrate that the proposed mechanisms can efficiently and effectively deliver the NFV services under different requirements and networking conditions. At last, we also propose two future research topics for further investigation. The first topic focuses on parallelism-aware service function chaining and embedding. The second topic investigates the survivability of NFV services

    Resource Orchestration in Softwarized Networks

    Get PDF
    Network softwarization is an emerging research area that is envisioned to revolutionize the way network infrastructure is designed, operated, and managed today. Contemporary telecommunication networks are going through a major transformation, and softwarization is recognized as a crucial enabler of this transformation by both academia and industry. Softwarization promises to overcome the current ossified state of Internet network architecture and evolve towards a more open, agile, flexible, and programmable networking paradigm that will reduce both capital and operational expenditures, cut-down time-to-market of new services, and create new revenue streams. Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are two complementary networking technologies that have established themselves as the cornerstones of network softwarization. SDN decouples the control and data planes to provide enhanced programmability and faster innovation of networking technologies. It facilitates simplified network control, scalability, availability, flexibility, security, cost-reduction, autonomic management, and fine-grained control of network traffic. NFV utilizes virtualization technology to reduce dependency on underlying hardware by moving packet processing activities from proprietary hardware middleboxes to virtualized entities that can run on commodity hardware. Together SDN and NFV simplify network infrastructure by utilizing standardized and commodity hardware for both compute and networking; bringing the benefits of agility, economies of scale, and flexibility of data centers to networks. Network softwarization provides the tools required to re-architect the current network infrastructure of the Internet. However, the effective application of these tools requires efficient utilization of networking resources in the softwarized environment. Innovative techniques and mechanisms are required for all aspects of network management and control. The overarching goal of this thesis is to address several key resource orchestration challenges in softwarized networks. The resource allocation and orchestration techniques presented in this thesis utilize the functionality provided by softwarization to reduce operational cost, improve resource utilization, ensure scalability, dynamically scale resource pools according to demand, and optimize energy utilization

    Resilient scalable internet routing and embedding algorithms

    Get PDF
    • …
    corecore