1,312 research outputs found

    Deep Over-sampling Framework for Classifying Imbalanced Data

    Full text link
    Class imbalance is a challenging issue in practical classification problems for deep learning models as well as traditional models. Traditionally successful countermeasures such as synthetic over-sampling have had limited success with complex, structured data handled by deep learning models. In this paper, we propose Deep Over-sampling (DOS), a framework for extending the synthetic over-sampling method to exploit the deep feature space acquired by a convolutional neural network (CNN). Its key feature is an explicit, supervised representation learning, for which the training data presents each raw input sample with a synthetic embedding target in the deep feature space, which is sampled from the linear subspace of in-class neighbors. We implement an iterative process of training the CNN and updating the targets, which induces smaller in-class variance among the embeddings, to increase the discriminative power of the deep representation. We present an empirical study using public benchmarks, which shows that the DOS framework not only counteracts class imbalance better than the existing method, but also improves the performance of the CNN in the standard, balanced settings

    MegDet: A Large Mini-Batch Object Detector

    Full text link
    The improvements in recent CNN-based object detection works, from R-CNN [11], Fast/Faster R-CNN [10, 31] to recent Mask R-CNN [14] and RetinaNet [24], mainly come from new network, new framework, or novel loss design. But mini-batch size, a key factor in the training, has not been well studied. In this paper, we propose a Large MiniBatch Object Detector (MegDet) to enable the training with much larger mini-batch size than before (e.g. from 16 to 256), so that we can effectively utilize multiple GPUs (up to 128 in our experiments) to significantly shorten the training time. Technically, we suggest a learning rate policy and Cross-GPU Batch Normalization, which together allow us to successfully train a large mini-batch detector in much less time (e.g., from 33 hours to 4 hours), and achieve even better accuracy. The MegDet is the backbone of our submission (mmAP 52.5%) to COCO 2017 Challenge, where we won the 1st place of Detection task

    Deep learning for time series classification: a review

    Get PDF
    Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.Comment: Accepted at Data Mining and Knowledge Discover

    MCNN-LSTM: Combining CNN and LSTM to classify multi-class text in imbalanced news data

    Get PDF
    Searching, retrieving, and arranging text in ever-larger document collections necessitate more efficient information processing algorithms. Document categorization is a crucial component of various information processing systems for supervised learning. As the quantity of documents grows, the performance of classic supervised classifiers has deteriorated because of the number of document categories. Assigning documents to a predetermined set of classes is called text classification. It is utilized extensively in a wide range of data-intensive applications. However, the fact that real-world implementations of these models are plagued with shortcomings begs for more investigation. Imbalanced datasets hinder the most prevalent high-performance algorithms. In this paper, we propose an approach name multi-class Convolutional Neural Network (MCNN)-Long Short-Time Memory (LSTM), which combines two deep learning techniques, Convolutional Neural Network (CNN) and Long Short-Time Memory, for text classification in news data. CNN's are used as feature extractors for the LSTMs on text input data and have the spatial structure of words in a sentence, paragraph, or document. The dataset is also imbalanced, and we use the Tomek-Link algorithm to balance the dataset and then apply our model, which shows better performance in terms of F1-score (98%) and Accuracy (99.71%) than the existing works. The combination of deep learning techniques used in our approach is ideal for the classification of imbalanced datasets with underrepresented categories. Hence, our method outperformed other machine learning algorithms in text classification by a large margin. We also compare our results with traditional machine learning algorithms in terms of imbalanced and balanced datasets
    corecore