86,935 research outputs found

    Cost-Sensitive Boosting

    Full text link

    AdaCC: cumulative cost-sensitive boosting for imbalanced classification

    Get PDF
    Class imbalance poses a major challenge for machine learning as most supervised learning models might exhibit bias towards the majority class and under-perform in the minority class. Cost-sensitive learning tackles this problem by treating the classes differently, formulated typically via a user-defined fixed misclassification cost matrix provided as input to the learner. Such parameter tuning is a challenging task that requires domain knowledge and moreover, wrong adjustments might lead to overall predictive performance deterioration. In this work, we propose a novel cost-sensitive boosting approach for imbalanced data that dynamically adjusts the misclassification costs over the boosting rounds in response to model’s performance instead of using a fixed misclassification cost matrix. Our method, called AdaCC, is parameter-free as it relies on the cumulative behavior of the boosting model in order to adjust the misclassification costs for the next boosting round and comes with theoretical guarantees regarding the training error. Experiments on 27 real-world datasets from different domains with high class imbalance demonstrate the superiority of our method over 12 state-of-the-art cost-sensitive boosting approaches exhibiting consistent improvements in different measures, for instance, in the range of [0.3–28.56%] for AUC, [3.4–21.4%] for balanced accuracy, [4.8–45%] for gmean and [7.4–85.5%] for recall

    AdaCC: Cumulative Cost-Sensitive Boosting for Imbalanced Classification

    Get PDF
    Class imbalance poses a major challenge for machine learning as most supervised learning models might exhibit bias towards the majority class and under-perform in the minority class. Cost-sensitive learning tackles this problem by treating the classes differently, formulated typically via a user-defined fixed misclassification cost matrix provided as input to the learner. Such parameter tuning is a challenging task that requires domain knowledge and moreover, wrong adjustments might lead to overall predictive performance deterioration. In this work, we propose a novel cost-sensitive boosting approach for imbalanced data that dynamically adjusts the misclassification costs over the boosting rounds in response to model's performance instead of using a fixed misclassification cost matrix. Our method, called AdaCC, is parameter-free as it relies on the cumulative behavior of the boosting model in order to adjust the misclassification costs for the next boosting round and comes with theoretical guarantees regarding the training error. Experiments on 27 real-world datasets from different domains with high class imbalance demonstrate the superiority of our method over 12 state-of-the-art cost-sensitive boosting approaches exhibiting consistent improvements in different measures, for instance, in the range of [0.3%-28.56%] for AUC, [3.4%-21.4%] for balanced accuracy, [4.8%-45%] for gmean and [7.4%-85.5%] for recall.Comment: 30 page

    CogBoost: Boosting for Fast Cost-Sensitive Graph Classification

    Full text link
    © 2015 IEEE. Graph classification has drawn great interests in recent years due to the increasing number of applications involving objects with complex structure relationships. To date, all existing graph classification algorithms assume, explicitly or implicitly, that misclassifying instances in different classes incurs an equal amount of cost (or risk), which is often not the case in real-life applications (where misclassifying a certain class of samples, such as diseased patients, is subject to more expensive costs than others). Although cost-sensitive learning has been extensively studied, all methods are based on data with instance-feature representation. Graphs, however, do not have features available for learning and the feature space of graph data is likely infinite and needs to be carefully explored in order to favor classes with a higher cost. In this paper, we propose, CogBoost, a fast cost-sensitive graph classification algorithm, which aims to minimize the misclassification costs (instead of the errors) and achieve fast learning speed for large scale graph data sets. To minimize the misclassification costs, CogBoost iteratively selects the most discriminative subgraph by considering costs of different classes, and then solves a linear programming problem in each iteration by using Bayes decision rule based optimal loss function. In addition, a cutting plane algorithm is derived to speed up the solving of linear programs for fast learning on large scale data sets. Experiments and comparisons on real-world large graph data sets demonstrate the effectiveness and the efficiency of our algorithm

    Multi-class Boosting for imbalanced data.

    Get PDF
    We consider the problem of multi-class classification with imbalanced data-sets. To this end, we introduce a cost-sensitive multi-class Boosting algorithm (BAdaCost) based on a generalization of the Boosting margin, termed multi-class cost-sensitive margin. To address the class imbalance we introduce a cost matrix that weighs more hevily the costs of confused classes and a procedure to estimate these costs from the confusion matrix of a standard 0|1-loss classifier. Finally, we evaluate the performance of the approach with synthetic and real data-sets and compare our results with the AdaC2.M1 algorithm
    • …
    corecore