4,245 research outputs found

    Cost-minimizing dynamic migration of content distribution services into hybrid clouds

    Get PDF
    Mini-Conference - MC3: Cloud ComputingThe recent advent of cloud computing technologies has enabled agile and scalable resource access for a variety of applications. Content distribution services are a major category of popular Internet applications. A growing number of content providers are contemplating a switch to cloud-based services, for better scalability and lower cost. Two key tasks are involved for such a move: to migrate their contents to cloud storage, and to distribute their web service load to cloud-based web services. The main challenge is to make the best use of the cloud as well as their existing on-premise server infrastructure, to serve volatile content requests with service response time guarantee at all times, while incurring the minimum operational cost. Employing Lyapunov optimization techniques, we present an optimization framework for dynamic, cost-minimizing migration of content distribution services into a hybrid cloud infrastructure that spans geographically distributed data centers. A dynamic control algorithm is designed, which optimally places contents and dispatches requests in different data centers to minimize overall operational cost over time, subject to service response time constraints. Rigorous analysis shows that the algorithm nicely bounds the response times within the preset QoS target in cases of arbitrary request arrival patterns, and guarantees that the overall cost is within a small constant gap from the optimum achieved by a T-slot lookahead mechanism with known information into the future. © 2012 IEEE.published_or_final_versionThe 31st Annual IEEE International Conference on Computer Communications (IEEE INFOCOM 2012), Orlando, FL., 25-30 March 2012. In IEEE Infocom Proceedings, 2012, p. 2571-257

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    Allocation of Virtual Machines in Cloud Data Centers - A Survey of Problem Models and Optimization Algorithms

    Get PDF
    Data centers in public, private, and hybrid cloud settings make it possible to provision virtual machines (VMs) with unprecedented flexibility. However, purchasing, operating, and maintaining the underlying physical resources incurs significant monetary costs and also environmental impact. Therefore, cloud providers must optimize the usage of physical resources by a careful allocation of VMs to hosts, continuously balancing between the conflicting requirements on performance and operational costs. In recent years, several algorithms have been proposed for this important optimization problem. Unfortunately, the proposed approaches are hardly comparable because of subtle differences in the used problem models. This paper surveys the used problem formulations and optimization algorithms, highlighting their strengths and limitations, also pointing out the areas that need further research in the future
    corecore