83 research outputs found

    A Systematic Mapping Study of MMOG Backend Architectures

    Get PDF
    The advent of utility computing has revolutionized almost every sector of traditional software development. Especially commercial cloud computing services, pioneered by the likes of Amazon, Google and Microsoft, have provided an unprecedented opportunity for the fast and sustainable development of complex distributed systems. Nevertheless, existing models and tools aim primarily for systems where resource usage—by humans and bots alike—is logically and physically quite disperse resulting in a low likelihood of conflicting resource access. However, a number of resource-intensive applications, such as Massively Multiplayer Online Games (MMOGs) and large-scale simulations introduce a requirement for a very large common state with many actors accessing it simultaneously and thus a high likelihood of conflicting resource access. This paper presents a systematic mapping study of the state-of-the-art in software technology aiming explicitly to support the development of MMOGs, a class of large-scale, resource-intensive software systems.By examining the main focus of a diverse set of related publications, we identify a list of criteria that are important for MMOG development. Then, we categorize the selected studies based on the inferred criteria in order to compare their approach, unveil the challenges faced in each of them and reveal research trends that might be present. Finally we attempt to identify research directions which appear promising for enabling the use of standardized technology for this class of systems

    Opportunistic Deployment of Distributed Edge Clouds for Latency-critical Applications

    Get PDF
    The growing number of latency-critical applications are posing novel challenges for network operators, cloud/hosting companies, and application providers. Edge Computing is the strongest candidate for providing low-latency responses, but it is not yet clear what edge infrastructures will be like. This paper introduces a new platform for enabling an edge infrastructure according to a disaggregated distributed cloud architecture and an opportunistic model based on bare-metal providers. Results from a multi-server online gaming application deployed in a real geo-distributed edge infrastructure show the feasibility, performance and cost efficiency of the solution

    An Overview of the Networking Issues of Cloud Gaming: A Literature Review

    Get PDF
    With the increasing prevalence of video games comes innovations that aim to evolve them. Cloud gaming is poised as the next phase of gaming. It enables users to play video games on any internet-enabled device. Such improvement could, therefore, enhance the processing power of existing devices and solve the need to spend large amounts of money on the latest gaming equipment. However, others argue that it may be far from being practically functional. Since cloud gaming places dependency on networks, new issues emerge. In relation, this paper is a review of the networking perspective of cloud gaming. Specifically, the paper analyzes its issues and challenges along with possible solutions. In order to accomplish the study, a literature review was performed. Results show that there are numerous issues and challenges regarding cloud gaming networks. Generally, cloud gaming has problems with its network quality of service (QoS) and quality of experience (QoE). The poor QoS and QoE of cloud gaming can be linked to unsatisfactory latency, bandwidth, delay, packet loss, and graphics quality. Moreover, the cost of providing the service and the complexity of implementing cloud gaming were considered challenges. For these issues and challenges, solutions were found. The solutions include lag or latency compensation, compression with encoding techniques, client computing power, edge computing, machine learning, frame adaption, and GPU-based server selection. However, these have limitations and may not always be applicable. Thus, even if solutions exist, it would be beneficial to analyze the networking side of cloud gaming further

    Effective and Economical Content Delivery and Storage Strategies for Cloud Systems

    Get PDF
    Cloud computing has proved to be an effective infrastructure to host various applications and provide reliable and stable services. Content delivery and storage are two main services provided by the cloud. A high-performance cloud can reduce the cost of both cloud providers and customers, while providing high application performance to cloud clients. Thus, the performance of such cloud-based services is closely related to three issues. First, when delivering contents from the cloud to users or transferring contents between cloud datacenters, it is important to reduce the payment costs and transmission time. Second, when transferring contents between cloud datacenters, it is important to reduce the payment costs to the internet service providers (ISPs). Third, when storing contents in the datacenters, it is crucial to reduce the file read latency and power consumption of the datacenters. In this dissertation, we study how to effectively deliver and store contents on the cloud, with a focus on cloud gaming and video streaming services. In particular, we aim to address three problems. i) Cost-efficient cloud computing system to support thin-client Massively Multiplayer Online Game (MMOG): how to achieve high Quality of Service (QoS) in cloud gaming and reduce the cloud bandwidth consumption; ii) Cost-efficient inter-datacenter video scheduling: how to reduce the bandwidth payment cost by fully utilizing link bandwidth when cloud providers transfer videos between datacenters; iii) Energy-efficient adaptive file replication: how to adapt to time-varying file popularities to achieve a good tradeoff between data availability and efficiency, as well as reduce the power consumption of the datacenters. In this dissertation, we propose methods to solve each of aforementioned challenges on the cloud. As a result, we build a cloud system that has a cost-efficient system to support cloud clients, an inter-datacenter video scheduling algorithm for video transmission on the cloud and an adaptive file replication algorithm for cloud storage system. As a result, the cloud system not only benefits the cloud providers in reducing the cloud cost, but also benefits the cloud customers in reducing their payment cost and improving high cloud application performance (i.e., user experience). Finally, we conducted extensive experiments on many testbeds, including PeerSim, PlanetLab, EC2 and a real-world cluster, which demonstrate the efficiency and effectiveness of our proposed methods. In our future work, we will further study how to further improve user experience in receiving contents and reduce the cost due to content transfer

    Simulation Modelling of Cloud Mini and Mega Data Centers Using Cloud Analyst

    Get PDF
    Cloud Computing has now become a base technology for various other technologies including Internet of Things, Big Data Technologies and many other technologies, the responsibility of Cloud become critical in case of real time applications where the cloud services are required in real time. Delay in the response from Cloud may lead to serious consequences even loss of lives where the processes data from cloud must reach within predefined time interval. The performance of Cloud has experienced delays with the current infrastructure due to multiple issues in Traditional Cloud Network Model. The Paper suggests a proposed architecture Cloud Mini Data Centers simulated using Cloud Analyst to minimize the delays of Cloud Service delivery. The paper also simulate traditional cloud Network model using Cloud Analyst and provides a comparative study of both models
    • …
    corecore