930 research outputs found

    Gesture Recognition and Control for Semi-Autonomous Robotic Assistant Surgeons

    Get PDF
    The next stage for robotics development is to introduce autonomy and cooperation with human agents in tasks that require high levels of precision and/or that exert considerable physical strain. To guarantee the highest possible safety standards, the best approach is to devise a deterministic automaton that performs identically for each operation. Clearly, such approach inevitably fails to adapt itself to changing environments or different human companions. In a surgical scenario, the highest variability happens for the timing of different actions performed within the same phases. This thesis explores the solutions adopted in pursuing automation in robotic minimally-invasive surgeries (R-MIS) and presents a novel cognitive control architecture that uses a multi-modal neural network trained on a cooperative task performed by human surgeons and produces an action segmentation that provides the required timing for actions while maintaining full phase execution control via a deterministic Supervisory Controller and full execution safety by a velocity-constrained Model-Predictive Controller

    Vision-Based Autonomous Control in Robotic Surgery

    Get PDF
    Robotic Surgery has completely changed surgical procedures. Enhanced dexterity, ergonomics, motion scaling, and tremor filtering, are well-known advantages introduced with respect to classical laparoscopy. In the past decade, robotic plays a fundamental role in Minimally Invasive Surgery (MIS) in which the da Vinci robotic system (Intuitive Surgical Inc., Sunnyvale, CA) is the most widely used system for robot-assisted laparoscopic procedures. Robots also have great potentiality in Microsurgical applications, where human limits are crucial and surgical sub-millimetric gestures could have enormous benefits with motion scaling and tremor compensation. However, surgical robots still lack advanced assistive control methods that could notably support surgeon's activity and perform surgical tasks in autonomy for a high quality of intervention. In this scenario, images are the main feedback the surgeon can use to correctly operate in the surgical site. Therefore, in view of the increasing autonomy in surgical robotics, vision-based techniques play an important role and can arise by extending computer vision algorithms to surgical scenarios. Moreover, many surgical tasks could benefit from the application of advanced control techniques, allowing the surgeon to work under less stressful conditions and performing the surgical procedures with more accuracy and safety. The thesis starts from these topics, providing surgical robots the ability to perform complex tasks helping the surgeon to skillfully manipulate the robotic system to accomplish the above requirements. An increase in safety and a reduction in mental workload is achieved through the introduction of active constraints, that can prevent the surgical tool from crossing a forbidden region and similarly generate constrained motion to guide the surgeon on a specific path, or to accomplish robotic autonomous tasks. This leads to the development of a vision-based method for robot-aided dissection procedure allowing the control algorithm to autonomously adapt to environmental changes during the surgical intervention using stereo images elaboration. Computer vision is exploited to define a surgical tools collision avoidance method that uses Forbidden Region Virtual Fixtures by rendering a repulsive force to the surgeon. Advanced control techniques based on an optimization approach are developed, allowing multiple tasks execution with task definition encoded through Control Barrier Functions (CBFs) and enhancing haptic-guided teleoperation system during suturing procedures. The proposed methods are tested on a different robotic platform involving da Vinci Research Kit robot (dVRK) and a new microsurgical robotic platform. Finally, the integration of new sensors and instruments in surgical robots are considered, including a multi-functional tool for dexterous tissues manipulation and different visual sensing technologies

    Vision-based methods for state estimation and control of robotic systems with application to mobile and surgical robots

    Get PDF
    For autonomous systems that need to perceive the surrounding environment for the accomplishment of a given task, vision is a highly informative exteroceptive sensory source. When gathering information from the available sensors, in fact, the richness of visual data allows to provide a complete description of the environment, collecting geometrical and semantic information (e.g., object pose, distances, shapes, colors, lights). The huge amount of collected data allows to consider both methods exploiting the totality of the data (dense approaches), or a reduced set obtained from feature extraction procedures (sparse approaches). This manuscript presents dense and sparse vision-based methods for control and sensing of robotic systems. First, a safe navigation scheme for mobile robots, moving in unknown environments populated by obstacles, is presented. For this task, dense visual information is used to perceive the environment (i.e., detect ground plane and obstacles) and, in combination with other sensory sources, provide an estimation of the robot motion with a linear observer. On the other hand, sparse visual data are extrapolated in terms of geometric primitives, in order to implement a visual servoing control scheme satisfying proper navigation behaviours. This controller relies on visual estimated information and is designed in order to guarantee safety during navigation. In addition, redundant structures are taken into account to re-arrange the internal configuration of the robot and reduce its encumbrance when the workspace is highly cluttered. Vision-based estimation methods are relevant also in other contexts. In the field of surgical robotics, having reliable data about unmeasurable quantities is of great importance and critical at the same time. In this manuscript, we present a Kalman-based observer to estimate the 3D pose of a suturing needle held by a surgical manipulator for robot-assisted suturing. The method exploits images acquired by the endoscope of the robot platform to extrapolate relevant geometrical information and get projected measurements of the tool pose. This method has also been validated with a novel simulator designed for the da Vinci robotic platform, with the purpose to ease interfacing and employment in ideal conditions for testing and validation. The Kalman-based observers mentioned above are classical passive estimators, whose system inputs used to produce the proper estimation are theoretically arbitrary. This does not provide any possibility to actively adapt input trajectories in order to optimize specific requirements on the performance of the estimation. For this purpose, active estimation paradigm is introduced and some related strategies are presented. More specifically, a novel active sensing algorithm employing visual dense information is described for a typical Structure-from-Motion (SfM) problem. The algorithm generates an optimal estimation of a scene observed by a moving camera, while minimizing the maximum uncertainty of the estimation. This approach can be applied to any robotic platforms and has been validated with a manipulator arm equipped with a monocular camera

    Entering a new era of surgical training : developing 3-dimensional print models for hands-on surgical training and its introduction into the congenital cardiac surgical curriculum

    Get PDF
    Congenital heart surgery is a technically challenging subspecialty of cardiothoracic surgery. This is due to a combination of factors including the rarity and variety of pathology and the small patient size. This coupled with the increasing public scrutiny and the expectation of excellent patient outcomes for even the most complex pathologies has led to limitations for surgical trainees to develop their surgical competencies in an efficient manner. Simulation has been used successfully to develop technical skills in other surgical specialities but is limited in congenital heart surgery. The objectives of this work were to develop and integrate hands-on simulation methods into the training of congenital heart surgeons using anatomically accurate 3D-printed heart models and to use validated, objective assessment methods to measure performance. The simulation programme was successfully developed and integrated into the regular training of congenital heart surgeons. The objective assessments demonstrated that there was an improvement in procedural performance and time across multiple complex procedures following deliberate practice and rehearsal. Furthermore, surgeons who had participated in the programme retained their technical skills following a prolonged delay supporting the value of simulation. Overall, there is value in the incorporation of hands-on simulation training into congenital heart surgery and it has the potential to be integrated into training programmes globally

    Robot Assisted Object Manipulation for Minimally Invasive Surgery

    Get PDF
    Robotic systems have an increasingly important role in facilitating minimally invasive surgical treatments. In robot-assisted minimally invasive surgery, surgeons remotely control instruments from a console to perform operations inside the patient. However, despite the advanced technological status of surgical robots, fully autonomous systems, with decision-making capabilities, are not yet available. In 2017, a structure to classify the research efforts toward autonomy achievable with surgical robots was proposed by Yang et al. Six different levels were identified: no autonomy, robot assistance, task autonomy, conditional autonomy, high autonomy, and full autonomy. All the commercially available platforms in robot-assisted surgery is still in level 0 (no autonomy). Despite increasing the level of autonomy remains an open challenge, its adoption could potentially introduce multiple benefits, such as decreasing surgeons’ workload and fatigue and pursuing a consistent quality of procedures. Ultimately, allowing the surgeons to interpret the ample and intelligent information from the system will enhance the surgical outcome and positively reflect both on patients and society. Three main aspects are required to introduce automation into surgery: the surgical robot must move with high precision, have motion planning capabilities and understand the surgical scene. Besides these main factors, depending on the type of surgery, there could be other aspects that might play a fundamental role, to name some compliance, stiffness, etc. This thesis addresses three technological challenges encountered when trying to achieve the aforementioned goals, in the specific case of robot-object interaction. First, how to overcome the inaccuracy of cable-driven systems when executing fine and precise movements. Second, planning different tasks in dynamically changing environments. Lastly, how the understanding of a surgical scene can be used to solve more than one manipulation task. To address the first challenge, a control scheme relying on accurate calibration is implemented to execute the pick-up of a surgical needle. Regarding the planning of surgical tasks, two approaches are explored: one is learning from demonstration to pick and place a surgical object, and the second is using a gradient-based approach to trigger a smoother object repositioning phase during intraoperative procedures. Finally, to improve scene understanding, this thesis focuses on developing a simulation environment where multiple tasks can be learned based on the surgical scene and then transferred to the real robot. Experiments proved that automation of the pick and place task of different surgical objects is possible. The robot was successfully able to autonomously pick up a suturing needle, position a surgical device for intraoperative ultrasound scanning and manipulate soft tissue for intraoperative organ retraction. Despite automation of surgical subtasks has been demonstrated in this work, several challenges remain open, such as the capabilities of the generated algorithm to generalise over different environment conditions and different patients
    • …
    corecore