152 research outputs found

    INSPIRE PROJECT: INTEGRATED TECHNOLOGIES FOR SMART BUILDINGS AND PREDICTIVE MAINTENANCE

    Get PDF
    Abstract. Applying integrated digital technologies for the management and maintenance of the existing built heritage appears to be one of the main current challenges for the definition and application of digitisation protocols for the construction supply chain. Key enabling technologies, collaborative platforms, Big Data management and information integration in a BIM environment are areas of increasing experimentation. In the field of intervention on the built heritage, it is the boundaries and opportunities offered by the integration of many different information sources that constitutes the main challenge. Furthermore, the study of the accessibility and usability of data and information from sources such as the three-dimensional terrestrial survey, existing databases, sensor networks, and satellite technologies make it possible to investigate both different ways of data modelling, even with a view to the development of predictive algorithms, and of visualisation and information management. The study illustrates part of the results of the InSPiRE project, an industrial research project financed with European structural funds and carried out in a public-private partnership by four universities and public research bodies, an innovation centre and six companies, SMEs, large enterprises, and start-ups. Specifically, the project highlights the growing importance of BIM-based modelling as a tool to lead users, both experts and non-experts, through the multiple information paths resulting from the relation between data and metadata

    Disassembly and deconstruction analytics system (D-DAS) for construction in a circular economy

    Get PDF
    © 2019 Despite the relevance of building information modelling for simulating building performance at various life cycle stages, Its use for assessing the end-of-life impacts is not a common practice. Even though the global sustainability and circular economy agendas require that buildings must have minimal impact on the environment across the entire lifecycle. In this study therefore, a disassembly and deconstruction analytics system is developed to provide buildings’ end-of-life performance assessment from the design stage. The system architecture builds on the existing building information modelling capabilities in managing building design and construction process. The architecture is made up of four different layers namely (i) Data storage layer, (ii) Semantic layer, (iii) Analytics and functional models layer and (iv) Application layer. The four layers are logically connected to function as a single system. Three key functionalities of the disassembly and deconstruction analytics system namely (i) Building Whole Life Performance Analytics (ii) Building Element Deconstruction Analytics and (iii) Design for Deconstruction Advisor are implemented as plug-in in Revit 2017. Three scenarios of a case study building design were used to test and evaluate the performance of the system. The results show that building information modelling software capabilities can be extended to provide a platform for assessing the performance of building designs in respect of the circular economy principle of keeping the embodied energy of materials perpetually in an economy. The disassembly and deconstruction analytics system would ensure that buildings are designed with design for disassembly and deconstruction principles that guarantee efficient materials recovery in mind. The disassembly and deconstruction analytics tool could also serve as a decision support platform that government and planners can use to evaluate the level of compliance of building designs to circular economy and sustainability requirements
    • …
    corecore