719 research outputs found

    A Novel QoS provisioning Scheme for OBS networks

    Get PDF
    This paper presents Classified Cloning, a novel QoS provisioning mechanism for OBS networks carrying real-time applications (such as video on demand, Voice over IP, online gaming and Grid computing). It provides such applications with a minimum loss rate while minimizing end-to-end delay and jitter. ns-2 has been used as the simulation tool, with new OBS modules having been developed for performance evaluation purposes. Ingress node performance has been investigated, as well as the overall performance of the suggested scheme. The results obtained showed that new scheme has superior performance to classical cloning. In particular, QoS provisioning offers a guaranteed burst loss rate, delay and expected value of jitter, unlike existing proposals for QoS implementation in OBS which use the burst offset time to provide such differentiation. Indeed, classical schemes increase both end-to-end delay and jitter. It is shown that the burst loss rate is reduced by 50% reduced over classical cloning

    Deflection Routing Strategies for Optical Burst Switching Networks: Contemporary Affirmation of the Recent Literature

    Get PDF
    A promising option to raising busty interchange in system communication could be Optical Burst Switched (OBS) networks among scalable and support routing effective. The routing schemes with disputation resolution got much interest, because the OBS network is buffer less in character. Because the deflection steering can use limited optical buffering or actually no buffering thus the choice or deflection routing techniques can be critical. Within this paper we investigate the affirmation of the current literature on alternate (deflection) routing strategies accessible for OBS networks

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    Burst contention avoidance schemes in hybrid GMPLS-enabled OBS/OCS optical networks

    Get PDF
    Hybrid optical network architectures, combining benefits of optical circuit and burst switching technologies, become a natural evolution to improve overall network performance while reducing related costs. This paper concentrates on preventive contention avoidance schemes to decrease burst loss probability at the OBS layer of such hybrid network scenarios. Into operation, the proposed solution locally reacts to highly loaded downstream node situations by preventively deflecting bursts through a less loaded neighbor. Two different approaches for disseminating adjacent nodes state information are presented and extensively evaluated. In the first approach, current node state information is propagated downstream in the burst control packet, keeping pace with OBS traffic dynamics. The second approach targets at lower control overhead. In this case, averaged node state statistics are included in the Hello messages of the GMPLS Link Management Protocol (LMP) protocol, which are exchanged between neighboring nodes over the OCS control layer every 150 ms. The obtained results validate the applicability of both approaches. Moreover, they indicate that, depending on the mean burst size, either one or the other approach is favorable.Postprint (published version

    New contention resolution techniques for optical burst switching

    Get PDF
    Optical burst switching (OBS) is a technology positioned between wavelength routing and optical packet switching that does not require optical buffering or packet-level parsing, and it is more efficient than circuit switching when the sustained traffic volume does not consume a full wavelength. However, several critical issues still need to be solved such as contention resolution without optical buffering which is a key determinant of packet-loss with a significant impact on network performance. Deflection routing is an approach for resolving contention by routing a contending packet to an output port other than the intended output port. In OBS networks, when contention between two bursts cannot be resolved through deflection routing, one of the bursts will be dropped. However, this scheme doesn’t take advantage of all the available resources in resolving contentions. Due to this, the performance of existing deflection routing scheme is not satisfactory. In this thesis, we propose and evaluate three new strategies which aim at resolving contention. We propose a new approach called Backtrack on Deflection Failure, which provides a second chance to blocked bursts when deflection failure occurs. The bursts in this scheme, when blocked, will get an opportunity to backtrack to the previous node and may get routed through any deflection route available at the previous node. Two variants are proposed for handling the backtracking delay involved in this scheme namely: (a) Increase in Initial Offset and (b) Open-Loop Reservation. Furthermore, we propose a third scheme called Bidirectional Reservation on Burst Drop in which bandwidth reservation is made in both the forward and the backward directions simultaneously. This scheme comes into effect only when control bursts get dropped due to bandwidth unavailability. The retransmitted control bursts will have larger offset value and because of this, they will have lower blocking probability than the original bursts. The performance of our schemes and of those proposed in the literature is studied through simulation. The parameters considered in evaluating these schemes are blocking probability, average throughput, and overall link utilization. The results obtained show that our schemes perform significantly better than their standard counterparts

    A novel ingress node design for video streaming over optical burst switching networks

    Get PDF
    This paper introduces a novel ingress node design which takes advantage of video data partitioning in order to deliver enhanced video streaming quality when using H.264/AVC codec over optical burst switching networks. Ns2 simulations show that the proposed scheme delivers improved video traffic quality without affecting other traffic, such as best effort traffic. Although the extra network load is comparatively small, the average gain in video PSNR was 5 dB over existing burst cloning schemes, with a maximum end-to-end delay of 17 ms, and jitter of less than 0.35 ms
    • …
    corecore