89,662 research outputs found

    Parallel framework for dynamic domain decomposition of data assimilation problems: a case study on Kalman Filter algorithm

    Get PDF
    We focus on Partial Differential Equation (PDE)‐based Data Assimilation problems (DA) solved by means of variational approaches and Kalman filter algorithm. Recently, we presented a Domain Decomposition framework (we call it DD‐DA, for short) performing a decomposition of the whole physical domain along space and time directions, and joining the idea of Schwarz's methods and parallel in time approaches. For effective parallelization of DD‐DA algorithms, the computational load assigned to subdomains must be equally distributed. Usually computational cost is proportional to the amount of data entities assigned to partitions. Good quality partitioning also requires the volume of communication during calculation to be kept at its minimum. In order to deal with DD‐DA problems where the observations are nonuniformly distributed and general sparse, in the present work we employ a parallel load balancing algorithm based on adaptive and dynamic defining of boundaries of DD—which is aimed to balance workload according to data location. We call it DyDD. As the numerical model underlying DA problems arising from the so‐called discretize‐then‐optimize approach is the constrained least square model (CLS), we will use CLS as a reference state estimation problem and we validate DyDD on different scenario

    Dynamic load balancing in parallel KD-tree k-means

    Get PDF
    One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy

    A Low Cost Two-Tier Architecture Model For High Availability Clusters Application Load Balancing

    Full text link
    This article proposes a design and implementation of a low cost two-tier architecture model for high availability cluster combined with load-balancing and shared storage technology to achieve desired scale of three-tier architecture for application load balancing e.g. web servers. The research work proposes a design that physically omits Network File System (NFS) server nodes and implements NFS server functionalities within the cluster nodes, through Red Hat Cluster Suite (RHCS) with High Availability (HA) proxy load balancing technologies. In order to achieve a low-cost implementation in terms of investment in hardware and computing solutions, the proposed architecture will be beneficial. This system intends to provide steady service despite any system components fails due to uncertainly such as network system, storage and applications.Comment: Load balancing, high availability cluster, web server cluster

    Dynamic load balancing for the distributed mining of molecular structures

    Get PDF
    In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids
    • 

    corecore