1,948 research outputs found

    Dynamic Service Level Agreement Management for Efficient Operation of Elastic Information Systems

    Get PDF
    The growing awareness that effective Information Systems (IS), which contribute to sustainable business processes, secure a long-lasting competitive advantage has increasingly focused corporate transformation efforts on the efficient usage of Information Technology (IT). In this context, we provide a new perspective on the management of enterprise information systems and introduce a novel framework that harmonizes economic and operational goals. Concretely, we target elastic n-tier applications with dynamic on-demand cloud resource provisioning. We design and implement a novel integrated management model for information systems that induces economic influence factors into the operation strategy to adapt the performance goals of an enterprise information system dynamically (i.e., online at runtime). Our framework forecasts future user behavior based on historic data, analyzes the impact of workload on system performance based on a non-linear performance model, analyzes the economic impact of different provisioning strategies, and derives an optimal operation strategy. The evaluation of our prototype, based on a real production system workload trace, is carried out in a custom test infrastructure (i.e., cloud testbed, n-tier benchmark application, distributed monitors, and control framework), which allows us to evaluate our approach in depth, in terms of efficiency along the entire SLA lifetime. Based on our thorough evaluation, we are able to make concise recommendations on how to use our framework effectively in further research and practice

    Autonomic Provisioning and Application Mapping on Spot Cloud Resources

    Get PDF
    © 2015 IEEE.The spot instance model is a virtual machine pricing scheme in which unused resources of cloud providers are offered to the highest bidder. This leads to the formation of a spot price, whose fluctuations can determine customers to be overbid by other users and lose the virtual machine they rented. In this paper we propose a heuristic to automate the decision on: (i) which and how many resources to rent in order to run a cloud application, (ii) how to map the application components to the rented resources, and (iii) what spot price bids to use in order to minimize the total bid price while maintaining an acceptable level of performance. To drive the decision making, our algorithm combines a multi-class queueing network model of the application with a Markov model that describes the stochastic evolution of the spot price and its influence on virtual machine reliability. We show, using a model developed for a real enterprise application and historical traces of the Amazon EC2 spot instance prices, that our heuristic finds low cost solutions that indeed guarantee the required levels of performance. The performance of our heuristic method is compared to that of nonlinear programming and shown to markedly accelerate the finding of low-cost optimal solutions

    A systematic literature review on Energy Efficiency in Cloud Software Architectures

    Get PDF
    Cloud-based software architectures introduce more complexity and require new competences for migration, maintenance, and evolution. Although cloud computing is often considered as an energy-efficient technology, the implications of cloud-based software on energy efficiency lack scientific evidence. At the same time, energy efficiency is becoming a crucial requirement for cloud service provisioning, as energy costs significantly contribute to the Total Cost of Ownership (TCO) of a data center. In this paper, we present the results of a systematic literature review that investigates cloud software architectures addressing energy efficiency as a primary concern. The aim is to provide an analysis of the state-of-the-art in the field of energy-efficient software architectures

    Role of the national energy system modelling in the process of the policy development

    Get PDF
    Strategic planning and decision making, nonetheless making energy policies and strategies, is very extensive process and has to follow multiple and often contradictory objectives. During the preparation of the new Slovenian Energy Programme proposal, complete update of the technology and sector oriented bottom up model of Reference Energy and Environmental System of Slovenia (REES-SLO) has been done. During the redevelopment of the REES-SLO model trade-off between the simulation and optimisation approach has been done, favouring presentation of relations between controls and their effects rather than the elusive optimality of results which can be misleading for small energy systems. Scenario-based planning was integrated into the MESAP (Modular Energy System Analysis and Planning) environment, allowing integration of past, present and planned (calculated) data in a comprehensive overall system. Within the paper, the main technical, economic and environmental characteristics of the Slovenian energy system model REES-SLO are described. This paper presents a new approach in modelling relatively small energy systems which goes beyond investment in particular technologies or categories of technology and allows smooth transition to low carbon economy. Presented research work confirms that transition from environment unfriendly fossil fuelled economy to sustainable and climate friendly development requires a new approach, which must be based on excellent knowledge of alternative possibilities of development and especially awareness about new opportunities in exploitation of energy efficiency and renewable energy sources

    Resource optimization of edge servers dealing with priority-based workloads by utilizing service level objective-aware virtual rebalancing

    Get PDF
    IoT enables profitable communication between sensor/actuator devices and the cloud. Slow network causing Edge data to lack Cloud analytics hinders real-time analytics adoption. VRebalance solves priority-based workload performance for stream processing at the Edge. BO is used in VRebalance to prioritize workloads and find optimal resource configurations for efficient resource management. Apache Storm platform was used with RIoTBench IoT benchmark tool for real-time stream processing. Tools were used to evaluate VRebalance. Study shows VRebalance is more effective than traditional methods, meeting SLO targets despite system changes. VRebalance decreased SLO violation rates by almost 30% for static priority-based workloads and 52.2% for dynamic priority-based workloads compared to hill climbing algorithm. Using VRebalance decreased SLO violations by 66.1% compared to Apache Storm\u27s default allocation

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)
    • …
    corecore