2,595 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Smart Energy Management System for Minimizing Electricity Cost and Peak to Average Ratio in Residential Areas with Hybrid Genetic Flower Pollination Algorithm

    Get PDF
    Demand Side Management (DSM) plays a significant role in the smart grid to minimize Electricity Cost (EC). Home Energy Management Systems (HEMSs) have recently been studied and proposed explicitly for HEM. In this paper, we propose a novel nature-inspired hybrid Genetic Flower Pollination Algorithm (GFPA) to minimize cost with an affordable delay in appliance scheduling. Our proposed GFPA algorithm combines elements of the Genetic Algorithm (GA) and Flower Pollination Algorithm (FPA) to create a hybrid approach. To assess the effectiveness of the proposed algorithm, we consider a scalable town consisting of 1, 10, 30, and 50 homes, respectively. The proposed solution finds an optimal scheduling pattern that simultaneously minimizes EC and Peak to Average Ratio (PAR) while maximizing User Comfort (UC). We assume that all homes are homogeneous regarding appliances and power consumption patterns. Simulation results show that our proposed scheme GFPA performs better when applying Critical Peak Pricing (CPP) signal using different Operational Time Intervals (OTIs) and compared with unscheduled, GA, and FPA-based solutions in terms of reducing cost since they achieve on average 98%, 36%, 23%, and 22%, respectively. Similarly, PAR averages 98%, 36%, 59%, and 55%, respectively. While, UC comparing to GA and FPA, are around 88%, 48%, and 63%, respectively. Our proposed scheme achieves better results by applying Real Time Pricing (RTP) signals and different OTIs. As these schemes, i.e., unscheduled, GA, FPA, and GFPA, achieve cost on average 92%, 50%, 29%, and 28%, respectively. While PAR on average 94%, 39%, 62%, and 56%, and UC for GA, FPA, and GFPA on average 98%, 52%, and 49%, respectively. Overall, ourproposed GFPA algorithm offers a more effective solution for minimizing EC with an affordable delay in appliance scheduling while considering PAR and UC

    Time-constrained nature-inspired optimization algorithms for an efficient energy management system in smart homes and buildings

    Get PDF
    This paper proposes two bio-inspired heuristic algorithms, the Moth-Flame Optimization (MFO) algorithm and Genetic Algorithm (GA), for an Energy Management System (EMS) in smart homes and buildings. Their performance in terms of energy cost reduction, minimization of the Peak to Average power Ratio (PAR) and end-user discomfort minimization are analysed and discussed. Then, a hybrid version of GA and MFO, named TG-MFO (Time-constrained Genetic-Moth Flame Optimization), is proposed for achieving the aforementioned objectives. TG-MFO not only hybridizes GA and MFO, but also incorporates time constraints for each appliance to achieve maximum end-user comfort. Different algorithms have been proposed in the literature for energy optimization. However, they have increased end-user frustration in terms of increased waiting time for home appliances to be switched ON. The proposed TG-MFO algorithm is specially designed for nearly-zero end-user discomfort due to scheduling of appliances, keeping in view the timespan of individual appliances. Renewable energy sources and battery storage units are also integrated for achieving maximum end-user benefits. For comparison, five bio-inspired heuristic algorithms, i.e., Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search Algorithm (CSA), Firefly Algorithm (FA) and Moth-Flame Optimization (MFO), are used to achieve the aforementioned objectives in the residential sector in comparison with TG-MFO. The simulations through MATLAB show that our proposed algorithm has reduced the energy cost up to 32.25% for a single user and 49.96% for thirty users in a residential sector compared to unscheduled load

    Intelligent Algorithm for Efficient Use of Energy Using Tackling the Load Uncertainty Method in Smart Grid

    Get PDF
    In this paper, i am developing a unique optimization based real time inland load management algorithm that takes into account load ambiguity in order to minimize the energy payment for each residential user, as well as reduce the peak to average ratio to overcome the drawbacks in the stability of electrical grid. By categorizing the all residential load in different classes, i.e. must run, interruptible and uninterruptible appliances, i used the real time pricing scheme for load management. However, real time pricing creates the peak profiles when the energy demand is too high, that’s why i used the combination of real time pricing and inclining blocks rates model to improve the grid stability by reducing the peak to average ratio. A simulation results show that the proposed algorithm efficiently and effectively reduced the overall residential energy cost as well as peak to average ratio of our model for data provided

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints
    corecore