65 research outputs found

    A Compact Camera with a Reconfigurable Real-time Embedded Image Processor for Pharmaceutical Capsule Inspections

    Get PDF
    The following thesis presents the system requirements, design methodology, final hardware design and system integration of a custom digital camera for high-speed pharmaceutical capsule inspections. The primary goals of the camera design were to minimize the cost of the device and to have a flexible design that could be easily upgraded in the future. For this application, a 3.1 mega pixel CMOS image sensor was used with a USB 2.0 interface. In addition, the custom camera can pre-process image data in an embedded, reconfigurable real-time image processor implemented in a FPGA. All data processing in the camera occurs with only buffering four rows of an image, eliminating the need for RAM on the device and lowering the overall cost. The final design was manufactured and implemented into a complete inspection system which used 16 of these cameras to inspect up to 60 000 capsules per second

    High performance high quality image demosaicing hardware designs

    Get PDF
    Since capturing three color channels (red, green, and blue) per pixel increases the cost of digital cameras, most digital cameras capture only one color channel per pixel using a single image sensor. The images pass through a color filter array before being captured by the image sensor. Demosaicing is the process of reconstructing the missing color channels of the pixels in the color filtered image using their available neighboring pixels. There are many image demosaicing algorithms with varying reconstructed image quality and computational complexity. In this thesis, high performance hardware architectures are designed for two high quality image demosaicing algorithms with high computational complexity. The proposed hardware architectures are implemented on an FPGA. A high performance Alternating Projections (AP) image demosaicing hardware is proposed. This is the first AP image demosaicing hardware in the literature. A high performance Enhanced Effective Color Interpolation (EECI) image demosaicing hardware is proposed. This is the first EECI image demosaicing hardware in the literature. The proposed hardware architectures are implemented using Verilog HDL. The Verilog RTL codes are mapped to a Xilinx Virtex 6 FPGA. The proposed FPGA implementations are verified with post place & route simulations. They can process 31 and 94 full HD (1920x1080) images per second, respectively

    De-velopment of Demosaicking Techniques for Multi-Spectral Imaging Using Mosaic Focal Plane Arrays

    Get PDF
    The use of mosaicked array technology in commercial digital cameras has madethem smaller, cheaper and mechanically more robust. In a mosaicked sensor, each pixel detector is covered with a wavelength-specific optical filter. Since only one spectral band is sensed per pixel location, there is an absence of information from the rest of the spectral bands. These unmeasured spectral bands are estimated by using information obtained from the neighborhood pixels. This process of estimating the unmeasured spectral band information is called demosaicking. The demosaicking process uses interpolation strategies to estimate the missing pixels. Sophisticated interpolation methods have been developed for performing this task in digital color cameras.In this thesis we propose to evaluate the adaptation of the mosaicked technol- ogy for multi-spectral cameras. Existing multi-spectral cameras use traditional methods like imaging spectrometers to capture a multi-spectral image. These methods are very expensive and delicate in nature. The objective of using the mosaicked technology for multi-spectral cameras is to reap the same benefits it offers in the commercial digital color cameras. However, the problem in using the mosaicked technology for multi-spectral images is the huge amount of missing pixels that need to be estimated in order to form the multi-spectral image. The estimation process becomes even more complicated as the number of bands in the multi-spectral image increases. Traditional demosaicking algorithms cannot be used because they have been specifically designed to suit three-band color images.This thesis focuses on developing new demosaicking algorithms for multi- spectral images. The existing demosaicking algorithms for color images have been extended for multi-spectral images. A new variation of the bilinear interpolationbased strategy has been developed to perform demosaicking. This demosaicking method uses variable neighborhood definitions to interpolate the missing spectral band values at each pixel locations in a multi-spectral image. A novel Maximum a-Posteriori (MAP) based demosaicking method has also been developed. This method treats demosaicking as an image restoration problem. It can derive op- timal estimation result that resembles the original image the best. In addition, it can simultaneously perform interpolation of missing spectral bands at pixel locations and also remove noise and degradations in the image.Extensive experimentation and comparisons have shown that the new demo- saicking methods for multi-spectral images developed in this thesis perform better than the traditional interpolation trategies. The outputs from the demosaicking methods have been shown to be better reconstructed estimates of the original im- ages and also have the ability to produce good classification results in applicationslike target recognition and discrimination

    A Future for Integrated Diagnostic Helping

    Get PDF
    International audienceMedical systems used for exploration or diagnostic helping impose high applicative constraints such as real time image acquisition and displaying. A large part of computing requirement of these systems is devoted to image processing. This chapter provides clues to transfer consumers computing architecture approaches to the benefit of medical applications. The goal is to obtain fully integrated devices from diagnostic helping to autonomous lab on chip while taking into account medical domain specific constraints.This expertise is structured as follows: the first part analyzes vision based medical applications in order to extract essentials processing blocks and to show the similarities between consumer’s and medical vision based applications. The second part is devoted to the determination of elementary operators which are mostly needed in both domains. Computing capacities that are required by these operators and applications are compared to the state-of-the-art architectures in order to define an efficient algorithm-architecture adequation. Finally this part demonstrates that it's possible to use highly constrained computing architectures designed for consumers handled devices in application to medical domain. This is based on the example of a high definition (HD) video processing architecture designed to be integrated into smart phone or highly embedded components. This expertise paves the way for the industrialisation of intergraded autonomous diagnostichelping devices, by showing the feasibility of such systems. Their future use would also free the medical staff from many logistical constraints due the deployment of today’s cumbersome systems

    Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

    Get PDF
    Endoscopy is an imaging procedure used for diagnosis as well as for some surgical purposes. The camera used for the endoscopy should be small and able to produce a good quality image or video, to reduce discomfort of the patients, and to increase the efficiency of the medical team. To achieve these fundamental goals, a small endoscopy camera with a footprint of 1 mm × 1 mm × 1.65 mm is used. Due to the physical prop erties of the sensors and human vision system limitations, different image-processing algorithms, such as noise reduction, demosaicking, and gamma correction, among others, are needed to faithfully reproduce the image or video. A full image-processing pipeline is implemented using a field-programmable gate array (FPGA) to accomplish a high frame rate of 60 fps with minimum processing delay. Along with this, a viewer has also been developed to display and control the image-processing pipeline. The control and data transfer are done by a USB 3.0 end point in the computer. The full developed system achieves real-time processing of the image and fits in a Xilinx Spartan-6LX150 FPGA.info:eu-repo/semantics/publishedVersio

    Combining transverse field detectors and color filter arrays to improve multispectral imaging systems

    Get PDF
    This work focuses on the improvement of a multispectral imaging sensor based on transverse field detectors (TFDs). We aimed to achieve a higher color and spectral accuracy in the estimation of spectral reflectances from sensor responses. Such an improvement was done by combining these recently developed silicon-based sensors with color filter arrays (CFAs). Consequently, we sacrificed the filter-less full spatial resolution property of TFDs to narrow down the spectrally broad sensitivities of these sensors.We designed and performed several experiments to test the influence of different design features on the estimation quality (type of sensor, tunability, interleaved polarization, use of CFAs, type of CFAs, number of shots), some of which are exclusive to TFDs.We compared systems that use a TFD with systems that use normal monochrome sensors, both combined with multispectral CFAs as well as common RGB filters present in commercial digital color cameras. Results showed that a system that combines TFDs and CFAs performs better than systems with the same type of multispectral CFA and other sensors, or even the same TFDs combined with different kinds of filters used in common imaging systems. We propose CFA+TFD-based systems with one or two shots, depending on the possibility of using longer capturing times or not. Improved TFD systems thus emerge as an interesting possibility for multispectral acquisition, which overcomes the limited accuracy found in previous studies.Spanish Ministry of Economy and Competitiveness through the research project DPI2011-2320
    corecore