93,438 research outputs found

    Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach

    Get PDF
    This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach

    On the Benefits of Surrogate Lagrangians in Optimal Control and Planning Algorithms

    Full text link
    This paper explores the relationship between numerical integrators and optimal control algorithms. Specifically, the performance of the differential dynamical programming (DDP) algorithm is examined when a variational integrator and a newly proposed surrogate variational integrator are used to propagate and linearize system dynamics. Surrogate variational integrators, derived from backward error analysis, achieve higher levels of accuracy while maintaining the same integration complexity as nominal variational integrators. The increase in the integration accuracy is shown to have a large effect on the performance of the DDP algorithm. In particular, significantly more optimized inputs are computed when the surrogate variational integrator is utilized

    Belief Propagation Algorithm for Portfolio Optimization Problems

    Full text link
    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti and M. M\'ezard [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.Comment: 5 pages, 2 figures, to submit to EP

    Direct transcription of low-thrust trajectories with finite trajectory elements

    Get PDF
    This paper presents a novel approach to the design of Low-Thrust trajectories, based on a first order approximated analytical solution of Gauss planetary equations. This analytical solution is shown to have a better accuracy than a second-order explicit numerical integrator and at a lower computational cost. Hence, it can be employed for the fast propagation of perturbed Keplerian motion when moderate accuracy is required. The analytical solution was integrated in a direct transcription method based on a decomposition of the trajectory into direct finite perturbative elements (DFPET). DFPET were applied to the solution of two-point boundary transfer problems. Furthermore the paper presents an example of the use of DFPET for the solution of a multiobjective trajectory optimisation problem in which both the total ∆V and transfer time are minimized with respect to departure and arrival dates. Two transfer problems were used as test cases: a direct transfer from Earth to Mars and a spiral from a low Earth orbit to the International Space Station
    • …
    corecore