269 research outputs found

    Node design in optical packet switched networks

    Get PDF

    Shared-per-wavelength asynchronous optical packet switching: A comparative analysis

    Get PDF
    Cataloged from PDF version of article.This paper compares four different architectures for sharing wavelength converters in asynchronous optical packet switches with variable-length packets. The first two architectures are the well-known shared-per-node (SPN) and shared-per-link (SPL) architectures, while the other two are the shared-per-input-wavelength (SPIW) architecture, recently proposed as an optical switch architecture in synchronous context only, which is extended here to the asynchronous scenario, and an original scheme called shared-per-output-wavelength (SPOW) architecture that we propose in the current article. We introduce novel analytical models to evaluate packet loss probabilities for SPIW and SPOW architectures in asynchronous context based on Markov chains and fixed-point iterations for the particular scenario of Poisson input traffic and exponentially distributed packet lengths. The models also account for unbalanced traffic whose impact is thoroughly studied. These models are validated by comparison with simulations which demonstrate that they are remarkably accurate. In terms of performance, the SPOW scheme provides blocking performance very close to the SPN scheme while maintaining almost the same complexity of the space switch, and employing less expensive wavelength converters. On the other hand, the SPIW scheme allows less complexity in terms of number of optical gates required, while it substantially outperforms the widely accepted SPL scheme. The authors therefore believe that the SPIW and SPOW schemes are promising alternatives to the conventional SPN and SPL schemes for the implementation of next-generation optical packet switching systems. 2010 Elsevier B.V. All rights reserved

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    Packet Loss Rate Differentiation in slotted Optical Packet Switching OCDM/WDM

    Get PDF
    We propose a multi-class mechanism for Optical Code Division Multiplexing (OCDM), Wavelength Division Multiplexing (WDM) Optical Packet Switch (OPS) architecture capable of supporting Quality of Service (QoS) transmission. OCDM/WDM has been proposed as a competitive hybrid switching technology to support the next generation optical Internet. This paper addresses performance issues in the slotted OPS networks and proposed four differentiation schemes to support Quality of Service. In addition, we present a comparison between the proposed schemes as well as, a simulation scheduler design which can be suitable for the core switch node in OPS networks. Using software simulations the performance of our algorithm in terms of losing probability, the packet delay, and scalability is evaluated

    Cross-layer modeling and optimization of next-generation internet networks

    Get PDF
    Scaling traditional telecommunication networks so that they are able to cope with the volume of future traffic demands and the stringent European Commission (EC) regulations on emissions would entail unaffordable investments. For this very reason, the design of an innovative ultra-high bandwidth power-efficient network architecture is nowadays a bold topic within the research community. So far, the independent evolution of network layers has resulted in isolated, and hence, far-from-optimal contributions, which have eventually led to the issues today's networks are facing such as inefficient energy strategy, limited network scalability and flexibility, reduced network manageability and increased overall network and customer services costs. Consequently, there is currently large consensus among network operators and the research community that cross-layer interaction and coordination is fundamental for the proper architectural design of next-generation Internet networks. This thesis actively contributes to the this goal by addressing the modeling, optimization and performance analysis of a set of potential technologies to be deployed in future cross-layer network architectures. By applying a transversal design approach (i.e., joint consideration of several network layers), we aim for achieving the maximization of the integration of the different network layers involved in each specific problem. To this end, Part I provides a comprehensive evaluation of optical transport networks (OTNs) based on layer 2 (L2) sub-wavelength switching (SWS) technologies, also taking into consideration the impact of physical layer impairments (PLIs) (L0 phenomena). Indeed, the recent and relevant advances in optical technologies have dramatically increased the impact that PLIs have on the optical signal quality, particularly in the context of SWS networks. Then, in Part II of the thesis, we present a set of case studies where it is shown that the application of operations research (OR) methodologies in the desing/planning stage of future cross-layer Internet network architectures leads to the successful joint optimization of key network performance indicators (KPIs) such as cost (i.e., CAPEX/OPEX), resources usage and energy consumption. OR can definitely play an important role by allowing network designers/architects to obtain good near-optimal solutions to real-sized problems within practical running times

    Simulation of switching architectures for Optical Packet Switched network

    Get PDF
    Projecte final de carrera fet en col.laboracio amb Univesità di Bologna, Facoltà di IngegneriaCatalà: Simulació de l'arquitectura de node en una xarxa òptica de commutació de paquets i descripció de les tècniques de dimensionament òptim.Castellano: Simulación de la arquitectura de nodo en una red óptica de conmutación de paquetes y descripción de las técnicas de dimensionado óptimo.English: The aim of this project is to implement a generic optical packet switching node architecture, describing contention resolution techniques and trying to define an optimal solution
    corecore