41,523 research outputs found

    Prediction of Large Events on a Dynamical Model of a Fault

    Full text link
    We present results for long term and intermediate term prediction algorithms applied to a simple mechanical model of a fault. We use long term prediction methods based, for example, on the distribution of repeat times between large events to establish a benchmark for predictability in the model. In comparison, intermediate term prediction techniques, analogous to the pattern recognition algorithms CN and M8 introduced and studied by Keilis-Borok et al., are more effective at predicting coming large events. We consider the implications of several different quality functions Q which can be used to optimize the algorithms with respect to features such as space, time, and magnitude windows, and find that our results are not overly sensitive to variations in these algorithm parameters. We also study the intrinsic uncertainties associated with seismicity catalogs of restricted lengths.Comment: 33 pages, plain.tex with special macros include

    Spatial support vector regression to detect silent errors in the exascale era

    Get PDF
    As the exascale era approaches, the increasing capacity of high-performance computing (HPC) systems with targeted power and energy budget goals introduces significant challenges in reliability. Silent data corruptions (SDCs) or silent errors are one of the major sources that corrupt the executionresults of HPC applications without being detected. In this work, we explore a low-memory-overhead SDC detector, by leveraging epsilon-insensitive support vector machine regression, to detect SDCs that occur in HPC applications that can be characterized by an impact error bound. The key contributions are three fold. (1) Our design takes spatialfeatures (i.e., neighbouring data values for each data point in a snapshot) into training data, such that little memory overhead (less than 1%) is introduced. (2) We provide an in-depth study on the detection ability and performance with different parameters, and we optimize the detection range carefully. (3) Experiments with eight real-world HPC applications show thatour detector can achieve the detection sensitivity (i.e., recall) up to 99% yet suffer a less than 1% of false positive rate for most cases. Our detector incurs low performance overhead, 5% on average, for all benchmarks studied in the paper. Compared with other state-of-the-art techniques, our detector exhibits the best tradeoff considering the detection ability and overheads.This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program, under Contract DE-AC02-06CH11357, by FI-DGR 2013 scholarship, by HiPEAC PhD Collaboration Grant, the European Community’s Seventh Framework Programme [FP7/2007-2013] under the Mont-blanc 2 Project (www.montblanc-project.eu), grant agreement no. 610402, and TIN2015-65316-P.Peer ReviewedPostprint (author's final draft

    Connecting Software Metrics across Versions to Predict Defects

    Full text link
    Accurate software defect prediction could help software practitioners allocate test resources to defect-prone modules effectively and efficiently. In the last decades, much effort has been devoted to build accurate defect prediction models, including developing quality defect predictors and modeling techniques. However, current widely used defect predictors such as code metrics and process metrics could not well describe how software modules change over the project evolution, which we believe is important for defect prediction. In order to deal with this problem, in this paper, we propose to use the Historical Version Sequence of Metrics (HVSM) in continuous software versions as defect predictors. Furthermore, we leverage Recurrent Neural Network (RNN), a popular modeling technique, to take HVSM as the input to build software prediction models. The experimental results show that, in most cases, the proposed HVSM-based RNN model has a significantly better effort-aware ranking effectiveness than the commonly used baseline models
    • …
    corecore