73 research outputs found

    Multicast Capacity of Optical WDM Packet Ring for Hotspot Traffic

    Get PDF
    Packet-switching WDM ring networks with a hotspot transporting unicast, multicast, and broadcast traffic are important components of high-speed metropolitan area networks. For an arbitrary multicast fanout traffic model with uniform, hotspot destination, and hotspot source packet traffic, we analyze the maximum achievable long-run average packet throughput, which we refer to as \textit{multicast capacity}, of bi-directional shortest-path routed WDM rings. We identify three segments that can experience the maximum utilization, and thus, limit the multicast capacity. We characterize the segment utilization probabilities through bounds and approximations, which we verify through simulations. We discover that shortest-path routing can lead to utilization probabilities above one half for moderate to large portions of hotspot source multi- and broadcast traffic, and consequently multicast capacities of less than two simultaneous packet transmissions. We outline a one-copy routing strategy that guarantees a multicast capacity of at least two simultaneous packet transmissions for arbitrary hotspot source traffic

    Optical control plane: theory and algorithms

    Get PDF
    In this thesis we propose a novel way to achieve global network information dissemination in which some wavelengths are reserved exclusively for global control information exchange. We study the routing and wavelength assignment problem for the special communication pattern of non-blocking all-to-all broadcast in WDM optical networks. We provide efficient solutions to reduce the number of wavelengths needed for non-blocking all-to-all broadcast, in the absence of wavelength converters, for network information dissemination. We adopt an approach in which we consider all nodes to be tap-and-continue capable thus studying lighttrees rather than lightpaths. To the best of our knowledge, this thesis is the first to consider “tap-and-continue” capable nodes in the context of conflict-free all-to-all broadcast. The problem of all to-all broadcast using individual lightpaths has been proven to be an NP-complete problem [6]. We provide optimal RWA solutions for conflict-free all-to-all broadcast for some particular cases of regular topologies, namely the ring, the torus and the hypercube. We make an important contribution on hypercube decomposition into edge-disjoint structures. We also present near-optimal polynomial-time solutions for the general case of arbitrary topologies. Furthermore, we apply for the first time the “cactus” representation of all minimum edge-cuts of graphs with arbitrary topologies to the problem of all-to-all broadcast in optical networks. Using this representation recursively we obtain near-optimal results for the number of wavelengths needed by the non-blocking all-to-all broadcast. The second part of this thesis focuses on the more practical case of multi-hop RWA for non- blocking all-to-all broadcast in the presence of Optical-Electrical-Optical conversion. We propose two simple but efficient multi-hop RWA models. In addition to reducing the number of wavelengths we also concentrate on reducing the number of optical receivers, another important optical resource. We analyze these models on the ring and the hypercube, as special cases of regular topologies. Lastly, we develop a good upper-bound on the number of wavelengths in the case of non-blocking multi-hop all-to-all broadcast on networks with arbitrary topologies and offer a heuristic algorithm to achieve it. We propose a novel network partitioning method based on “virtual perfect matching” for use in the RWA heuristic algorithm
    • …
    corecore