83 research outputs found

    Cospectral Graphs and Regular Orthogonal Matrices of Level 2

    Get PDF

    Developments on Spectral Characterizations of Graphs

    Get PDF
    In [E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003), 241-272] we gave a survey of answers to the question of which graphs are determined by the spectrum of some matrix associated to the graph. In particular, the usual adjacency matrix and the Laplacian matrix were addressed. Furthermore, we formulated some research questions on the topic. In the meantime some of these questions have been (partially) answered. In the present paper we give a survey of these and other developments.2000 Mathematics Subject Classification: 05C50Spectra of graphs;Cospectral graphs;Generalized adjacency matrices;Distance-regular graphs

    New strongly regular graphs from finite geometries via switching

    Get PDF
    We show that the strongly regular graph on non-isotropic points of one type of the polar spaces of type U(n, 2), O(n, 3), O(n, 5), O+ (n, 3), and O- (n, 3) are not determined by its parameters for n >= 6. We prove this by using a variation of Godsil-McKay switching recently described by Wang, Qiu, and Hu. This also results in a new, shorter proof of a previous result of the first author which showed that the collinearity graph of a polar space is not determined by its spectrum. The same switching gives a linear algebra explanation for the construction of a large number of non-isomorphic designs. (C) 2019 Elsevier Inc. All rights reserved

    New Strongly Regular Graphs from Finite Geometries via Switching

    Get PDF
    We show that the strongly regular graph on non-isotropic points of one type of the polar spaces of type U(n,2)U(n, 2), O(n,3)O(n, 3), O(n,5)O(n, 5), O+(n,3)O^+(n, 3), and O(n,3)O^-(n, 3) are not determined by its parameters for n6n \geq 6. We prove this by using a variation of Godsil-McKay switching recently described by Wang, Qiu, and Hu. This also results in a new, shorter proof of a previous result of the first author which showed that the collinearity graph of a polar space is not determined by its spectrum. The same switching gives a linear algebra explanation for the construction of a large number of non-isomorphic designs.Comment: 13 pages, accepted in Linear Algebra and Its Application

    Spectral graph theory : from practice to theory

    Get PDF
    Graph theory is the area of mathematics that studies networks, or graphs. It arose from the need to analyse many diverse network-like structures like road networks, molecules, the Internet, social networks and electrical networks. In spectral graph theory, which is a branch of graph theory, matrices are constructed from such graphs and analysed from the point of view of their so-called eigenvalues and eigenvectors. The first practical need for studying graph eigenvalues was in quantum chemistry in the thirties, forties and fifties, specifically to describe the Hückel molecular orbital theory for unsaturated conjugated hydrocarbons. This study led to the field which nowadays is called chemical graph theory. A few years later, during the late fifties and sixties, graph eigenvalues also proved to be important in physics, particularly in the solution of the membrane vibration problem via the discrete approximation of the membrane as a graph. This paper delves into the journey of how the practical needs of quantum chemistry and vibrating membranes compelled the creation of the more abstract spectral graph theory. Important, yet basic, mathematical results stemming from spectral graph theory shall be mentioned in this paper. Later, areas of study that make full use of these mathematical results, thus benefitting greatly from spectral graph theory, shall be described. These fields of study include the P versus NP problem in the field of computational complexity, Internet search, network centrality measures and control theory.peer-reviewe

    Developments on Spectral Characterizations of Graphs

    Get PDF
    In [E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003), 241-272] we gave a survey of answers to the question of which graphs are determined by the spectrum of some matrix associated to the graph. In particular, the usual adjacency matrix and the Laplacian matrix were addressed. Furthermore, we formulated some research questions on the topic. In the meantime some of these questions have been (partially) answered. In the present paper we give a survey of these and other developments.2000 Mathematics Subject Classification: 05C50

    Developments on spectral characterizations of graphs

    Get PDF
    AbstractIn [E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum? Linear Algebra Appl. 373 (2003), 241–272] we gave a survey of answers to the question of which graphs are determined by the spectrum of some matrix associated to the graph. In particular, the usual adjacency matrix and the Laplacian matrix were addressed. Furthermore, we formulated some research questions on the topic. In the meantime, some of these questions have been (partially) answered. In the present paper we give a survey of these and other developments
    corecore