325 research outputs found

    Cosine-modulated FIR filter banks satisfying perfect reconstruction

    Get PDF
    The authors obtain a necessary and sufficient condition on the 2M (M = number of channels) polyphase components of a linear-phase prototype filter of length N = 2mM (where m = an arbitrary positive integer), such that the polyphase component matrix of the modulated filter is lossless. The losslessness of the polyphase component matrix, in turn, is sufficient to ensure that the analysis/synthesis system satisfies perfect reconstruction (PR). Using this result, a novel design procedure is presented based on the two-channel lossless lattice. This enables the design of a large class of FIR (finite impulse response)-PR filter banks, and includes the N = 2M case. It is shown that this approach requires fewer parameters to be optimized than in the pseudo-QMF (quadrature mirror filter) designs and in the lossless lattice based PR-QMF designs (for equal length filters in the three designs). This advantage becomes significant when designing long filters for large M. The design procedure and its other advantages are described in detail. Design examples and comparisons are included

    Linear phase cosine modulated maximally decimated filter banks with perfect reconstruction

    Get PDF
    We propose a novel way to design maximally decimated FIR cosine modulated filter banks, in which each analysis and synthesis filter has a linear phase. The system can be designed to have either the approximate reconstruction property (pseudo-QMF system) or perfect reconstruction property (PR system). In the PR case, the system is a paraunitary filter bank. As in earlier work on cosine modulated systems, all the analysis filters come from an FIR prototype filter. However, unlike in any of the previous designs, all but two of the analysis filters have a total bandwidth of 2π/M rather than π/M (where 2M is the number of channels in our notation). A simple interpretation is possible in terms of the complex (hypothetical) analytic signal corresponding to each bandpass subband. The coding gain of the new system is comparable with that of a traditional M-channel system (rather than a 2M-channel system). This is primarily because there are typically two bandpass filters with the same passband support. Correspondingly, the cost of the system (in terms of complexity of implementation) is also comparable with that of an M-channel system. We also demonstrate that very good attenuation characteristics can be obtained with the new system

    Theory and design of causal stable IIR PR cosine-modulated filter banks

    Get PDF
    This paper proposes a novel method for designing two-channel and M-channel causal stable IIR PR filter banks using cosine modulation. In particular, we show that the PR condition of the two-channel IIR filter banks is very similar to the two-channel FIR case. Using this formulation, it is relatively simple to satisfy the PR condition and to ensure that the filters are causal stable. Using a similar approach, we propose a new class of M-channel causal stable IIR cosine modulated filter banks. Design examples are given to demonstrate the usefulness of proposed approach.published_or_final_versio

    Computation of the para-pseudoinverse for oversampled filter banks: Forward and backward Greville formulas

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Frames and oversampled filter banks have been extensively studied over the past few years due to their increased design freedom and improved error resilience. In frame expansions, the least square signal reconstruction operator is called the dual frame, which can be obtained by choosing the synthesis filter bank as the para-pseudoinverse of the analysis bank. In this paper, we study the computation of the dual frame by exploiting the Greville formula, which was originally derived in 1960 to compute the pseudoinverse of a matrix when a new row is appended. Here, we first develop the backward Greville formula to handle the case of row deletion. Based on the forward Greville formula, we then study the computation of para-pseudoinverse for extended filter banks and Laplacian pyramids. Through the backward Greville formula, we investigate the frame-based error resilient transmission over erasure channels. The necessary and sufficient condition for an oversampled filter bank to be robust to one erasure channel is derived. A postfiltering structure is also presented to implement the para-pseudoinverse when the transform coefficients in one subband are completely lost

    Theory and design of a class of M-channel IIR cosine-modulated filter banks

    Get PDF
    This letter proposes a method for designing a class of M-channel, causal, stable, perfect reconstruction (PR) IIR cosine-modulated filter banks (CMFB). The proposed CMFB has the same denominator for all its polyphase components in the prototype filter. Therefore, the PR condition is considerably simplified, and it is relatively simple to satisfy the PR and the casual-stable requirements of the IIR CMFB. Design examples show that the proposed IIR CMFB has sharper cutoff, higher stopband attenuation, and passband flatness than its FIR counterparts, especially when the system delay is small.published_or_final_versio

    A class of M-Channel linear-phase biorthogonal filter banks and their applications to subband coding

    Get PDF
    This correspondence presents a new factorization for linearphase biorthogonal perfect reconstruction (PR) FIR filter banks. Using this factorization, we propose a new family of lapped transform called the generalized lapped transform (GLT). Since the analysis and synthesis filters of the GLT are not restricted to be the time reverses of each other, they can offer more freedom to avoid blocking artifacts and improve coding gain in subband coding applications. The GLT is found to have higher coding gain and smoother synthesis basis functions than the lapped orthogonal transform (LOT). Simulation results also demonstrated that the GLT has significantly less blocking artifacts, higher peak signal-tonoise ratio (PSNR), and better visual quality than the LOT in image coding. Simplified GLT with different complexity/performance tradeoff is also studied. © 1999 IEEE.published_or_final_versio
    corecore