139 research outputs found

    Electrical and Thermomechanical Co-Simulation Platform for NPP

    Get PDF
    Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.In order to analyze the safety of nuclear power plants (NPP), interactions between ther-momechanical and automation processes, the on-site electrical grid, and the off-site transmission system should be studied in detail. However, an initial survey of simulation tools used for the modelling and simulation of NPP shows that existing simulation tools have some drawbacks in properly simulating the aforementioned interactions. In fact, they simulate detailed electrical power systems and thermomechanical systems but neglect the detailed interactions of the electrical system with thermomechanical and automation processes. To address this challenge, this paper devel-ops an open-source co-simulation platform which connects Apros, a proprietary simulator of the thermomechanical and automation processes in NPP, to power system simulators. The proposed platform provides an opportunity to simulate both the electrical and thermomechanical systems of an NPP simultaneously, and study the interactions between them without neglecting any details. This detailed analysis can identify critical faults more accurately, and provides better support for probabilistic risk analyses (PRA) of NPP. To investigate the effectiveness of the proposed platform, detailed thermomechanical and electrical models of an NPP, located in Finland, are cosimulated. The preliminary results emphasize that neglecting the detailed interactions between domains of NPP may lead to inaccurate simulation results and may affect NPP safety.Peer reviewe

    Accelerated Real-Time Simulations for Testing a Reactive Power Flow Controller in Long-Term Case Studies

    Get PDF
    This paper presents the development of an accelerated real-time cosimulation and testing platform, especially for long-term simulations of power systems. The platform is planned to be utilized in the development and testing of active network management functions for microgrids and smart grids. Long-term simulations are needed in order to study, for example, the potential weekly, monthly, or yearly usage of distribution-network-connected distributed energy resources for different technical flexibility services. In order to test new algorithms in long-term study cases, real-time simulations or hardware-in-the-loop tests should be accelerated. This paper analyzes the possibilities and challenges of accelerated long-term simulations in studying the potential use of a large-scale wind turbine for reactive power flow control between distribution system operator (DSO) and transmission system operator (TSO) networks. To this end, the reactive power flow control is studied for different voltage levels (HV and MV) in the Sundom Smart Grid in Vaasa, Finland. The control of reactive power flow between HV and MV networks is realized with a reactive power window control algorithm for a 3.6 MW MV-network-connected wind turbine with a full-scale power converter. The behaviour of the reactive power controller during long-term simulations is studied by offline and real-time simulations. Moreover, the real-time simulations are performed with both software-in-the-loop and controller-hardware-in-the-loop.Copyright © 2020 Katja H. Sirviö et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.fi=vertaisarvioitu|en=peerReviewed

    Co-simulation platform for interconnected power systems and communication networks based on PSS/E and OMNeT++

    Get PDF
    This paper proposes a co-simulator that combines OMNeT++ for communication systems with PSS/E for the electrical transmission network. The cosimulator applies an event-driven synchronization method that minimizes errors due to delays in the synchronization between both simulators. The synchronization method pauses the simulation of the power system at each communication event, while a supervisory module in PSS/E returns control to the event simulator if any condition from a pre-specified set is met. The proposed co-simulator is demonstrated on a protection system based on peer-to-peer communication and used to evaluate the effect of communication latency times on an online state estimator.This work was supported by the Spanish Agencia Estatal de Investigacion under grant PID2019-104449RB-I0

    Co-simulation of a Low-Voltage Utility Grid Controlled over IEC 61850 protocol

    No full text
    International audienceThis paper presents a co-simulation model using MATLAB® toolboxes to illustrate an interaction between the communication system and the energy grid, coherent with the concept of smart grid that employs IEC 61850 communication standard. The MMS (Manufacturing Message Specification) protocol supported by IEC 61850, based on TCP/IP is used for the vertical communication between the Supervisory and Data Acquisition (SCADA) system and Intelligent Electronic Devices (IEDs) embedding the local control of different parts of the smart grid. In this paper an IED supporting the power control of a photovoltaic (PV) plant connected to a low-voltage (LV) utility grid is considered. Communication system consisting of the transport layer and a router placed on the network layer is modeled as an event driven system using SimEvents® toolbox and energy grid is modeled as a time-driven system using SimPowerSystems® toolbox. Co-simulation results are obtained by combining different communication scenarios and time-varying irradiance scenarios for thee PV plant when the PV plant is required to provide a certain power in response to a power reference received from SCADA over the communication network. The analysis aims at illustrating the impact that stochastic behavior and delays due to network communication have on the global system behavior

    Future Perspectives of Co-Simulation in the Smart Grid Domain

    Full text link
    The recent attention towards research and development in cyber-physical energy systems has introduced the necessity of emerging multi-domain co-simulation tools. Different educational, research and industrial efforts have been set to tackle the co-simulation topic from several perspectives. The majority of previous works has addressed the standardization of models and interfaces for data exchange, automation of simulation, as well as improving performance and accuracy of co-simulation setups. Furthermore, the domains of interest so far have involved communication, control, markets and the environment in addition to physical energy systems. However, the current characteristics and state of co-simulation testbeds need to be re-evaluated for future research demands. These demands vary from new domains of interest, such as human and social behavior models, to new applications of co-simulation, such as holistic prognosis and system planning. This paper aims to formulate these research demands that can then be used as a road map and guideline for future development of co-simulation in cyber-physical energy systems

    The smart grid simulation framework: model-driven engineering applied to cyber-physical systems

    Get PDF
    International audienceSmart grids are complex systems for which simulation offers a practical way to evaluate and compare multiple solutions before deployment. However, the simulation of a Smart Grid requires the development of heterogeneous models corresponding to electrical, information processing, and telecommunication behaviors. These heterogeneous models must be linked and analyzed together in order to detect the influences on one another and identify emerging behaviors. We apply model-driven engineering to such cyber-physical systems combining physical and digital components and propose SGridSF, the Smart Grid Simulation Framework, which automates tasks in order to ensure consistency between different simulation models. This framework consists mainly of a domain specific language for modeling a cosimulation unit, called CosiML for Cosimulation Modeling Language, a domain specific language for modeling the functional architecture of a Smart Grid, called SGridML for Smart Grid Modeling Language, and a tool implementing different transformation rules to generate the files and scripts for executing a cosimulation. Finally, we illustrate the use of SGridSF on the real use case of an islanded grid implementing diesel and renewable sources, battery storage and intelligent control of the production. We show the sequencing of automatic generation tasks that minimizes the effort and the risk of error at each iteration of the process

    Platform for Multiagent Application Development Incorporating Accurate Communications Modeling

    No full text
    corecore