39 research outputs found

    A co-designed equalization, modulation, and coding scheme

    Get PDF
    The commercial impact and technical success of Trellis Coded Modulation seems to illustrate that, if Shannon's capacity is going to be neared, the modulation and coding of an analogue signal ought to be viewed as an integrated process. More recent work has focused on going beyond the gains obtained for Average White Gaussian Noise and has tried to combine the coding/modulation with adaptive equalization. The motive is to gain similar advances on less perfect or idealized channels

    Investigation of coding and equalization for the digital HDTV terrestrial broadcast channel

    Get PDF
    Includes bibliographical references (p. 241-248).Supported by the Advanced Telecommunications Research Program.Julien J. Nicolas

    High-speed turbo-TCM-coded orthogonal frequency-division multiplexing ultra-wideband systems

    Get PDF
    One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM) system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution. Copyright (C) 2006 Yanxia Wang et al

    Information theory : proceedings of the 1990 IEEE international workshop, Eindhoven, June 10-15, 1990

    Get PDF

    Information theory : proceedings of the 1990 IEEE international workshop, Eindhoven, June 10-15, 1990

    Get PDF

    On the performance of data receivers with a restricted detection delay

    Full text link

    Asymmetric LOCO Codes: Constrained Codes for Flash Memories

    Full text link
    In data storage and data transmission, certain patterns are more likely to be subject to error when written (transmitted) onto the media. In magnetic recording systems with binary data and bipolar non-return-to-zero signaling, patterns that have insufficient separation between consecutive transitions exacerbate inter-symbol interference. Constrained codes are used to eliminate such error-prone patterns. A recent example is a new family of capacity-achieving constrained codes, named lexicographically-ordered constrained codes (LOCO codes). LOCO codes are symmetric, that is, the set of forbidden patterns is closed under taking pattern complements. LOCO codes are suboptimal in terms of rate when used in Flash devices where block erasure is employed since the complement of an error-prone pattern is not detrimental in these devices. This paper introduces asymmetric LOCO codes (A-LOCO codes), which are lexicographically-ordered constrained codes that forbid only those patterns that are detrimental for Flash performance. A-LOCO codes are also capacity-achieving, and at finite-lengths, they offer higher rates than the available state-of-the-art constrained codes designed for the same goal. The mapping-demapping between the index and the codeword in A-LOCO codes allows low-complexity encoding and decoding algorithms that are simpler than their LOCO counterparts.Comment: 9 pages (double column), 0 figures, accepted at the Annual Allerton Conference on Communication, Control, and Computin

    A Critical Review of Physical Layer Security in Wireless Networking

    Get PDF
    Wireless networking has kept evolving with additional features and increasing capacity. Meanwhile, inherent characteristics of wireless networking make it more vulnerable than wired networks. In this thesis we present an extensive and comprehensive review of physical layer security in wireless networking. Different from cryptography, physical layer security, emerging from the information theoretic assessment of secrecy, could leverage the properties of wireless channel for security purpose, by either enabling secret communication without the need of keys, or facilitating the key agreement process. Hence we categorize existing literature into two main branches, namely keyless security and key-based security. We elaborate the evolution of this area from the early theoretic works on the wiretap channel, to its generalizations to more complicated scenarios including multiple-user, multiple-access and multiple-antenna systems, and introduce not only theoretical results but practical implementations. We critically and systematically examine the existing knowledge by analyzing the fundamental mechanics for each approach. Hence we are able to highlight advantages and limitations of proposed techniques, as well their interrelations, and bring insights into future developments of this area

    Low-Complexity Soft-Decision Detection for Combating DFE Burst Errors in IM/DD Links

    Full text link
    The deployment of non-binary pulse amplitude modulation (PAM) and soft decision (SD)-forward error correction (FEC) in future intensity-modulation (IM)/direct-detection (DD) links is inevitable. However, high-speed IM/DD links suffer from inter-symbol interference (ISI) due to bandwidth-limited hardware. Traditional approaches to mitigate the effects of ISI are filters and trellis-based algorithms targeting symbol-wise maximum a posteriori (MAP) detection. The former approach includes decision-feedback equalizer (DFE), and the latter includes Max-Log-MAP (MLM) and soft-output Viterbi algorithm (SOVA). Although DFE is easy to implement, it introduces error propagation. Such burst errors distort the log-likelihood ratios (LLRs) required by SD-FEC, causing performance degradation. On the other hand, MLM and SOVA provide near-optimum performance, but their complexity is very high for high-order PAM. In this paper, we consider a one-tap partial response channel model, which is relevant for high-speed IM/DD links. We propose to combine DFE with either MLM or SOVA in a low-complexity architecture. The key idea is to allow MLM or SOVA to detect only 3 typical DFE symbol errors, and use the detected error information to generate LLRs in a modified demapper. The proposed structure enables a tradeoff between complexity and performance: (i) the complexity of MLM or SOVA is reduced and (ii) the decoding penalty due to error propagation is mitigated. Compared to SOVA detection, the proposed scheme can achieve a significant complexity reduction of up to 94% for PAM-8 transmission. Simulation and experimental results show that the resulting SNR loss is roughly 0.3 to 0.4 dB for PAM-4, and becomes marginal 0.18 dB for PAM-8.Comment: This manuscript has been submitted to JL
    corecore