15 research outputs found

    Corticonic models of brain mechanisms underlying cognition and intelligence

    Get PDF
    The concern of this review is brain theory or more specifically, in its first part, a model of the cerebral cortex and the way it:(a) interacts with subcortical regions like the thalamus and the hippocampus to provide higher-level-brain functions that underlie cognition and intelligence, (b) handles and represents dynamical sensory patterns imposed by a constantly changing environment, (c) copes with the enormous number of such patterns encountered in a lifetime bymeans of dynamic memory that offers an immense number of stimulus-specific attractors for input patterns (stimuli) to select from, (d) selects an attractor through a process of “conjugation” of the input pattern with the dynamics of the thalamo–cortical loop, (e) distinguishes between redundant (structured)and non-redundant (random) inputs that are void of information, (f) can do categorical perception when there is access to vast associative memory laid out in the association cortex with the help of the hippocampus, and (g) makes use of “computation” at the edge of chaos and information driven annealing to achieve all this. Other features and implications of the concepts presented for the design of computational algorithms and machines with brain-like intelligence are also discussed. The material and results presented suggest, that a Parametrically Coupled Logistic Map network (PCLMN) is a minimal model of the thalamo–cortical complex and that marrying such a network to a suitable associative memory with re-entry or feedback forms a useful, albeit, abstract model of a cortical module of the brain that could facilitate building a simple artificial brain. In the second part of the review, the results of numerical simulations and drawn conclusions in the first part are linked to the most directly relevant works and views of other workers. What emerges is a picture of brain dynamics on the mesoscopic and macroscopic scales that gives a glimpse of the nature of the long sought after brain code underlying intelligence and other higher level brain functions. Physics of Life Reviews 4 (2007) 223–252 © 2007 Elsevier B.V. All rights reserved

    Gain modulation of synaptic inputs by network state in auditory cortex in vivo

    Get PDF
    The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; Españ

    Self-Organization in a Parametrically Coupled Logistic Map Network: A Model for Information Processing in the Visual Cortex

    Get PDF
    In this paper, a new model seeking to emulate the way the visual cortex processes information and interacts with subcortical areas to produce higher level brain functions is described. We developed a macroscopic approach that incorporates salient attributes of the cortex based on combining tools of nonlinear dynamics, information theory, and the known organizational and anatomical features of cortex. Justifications for this approach and demonstration of its effectiveness are presented. We also demonstrate certain capabilities of this model in producing efficient sparse representations and providing the cortical computational maps

    Dynamics of electron-trapping materials under blue light and near infrared exposure: an improved model

    Get PDF
    Dynamics of electron-trapping materials (ETMs) is investigated. Based on experimental observations, evolution of the ETM\u27s luminescence is mathematically modeled by a nonlinear differential equation. This improved model can predict dynamics of ETM under blue light and near-infrared (NIR) exposures during charging, discharging, simultaneous illumination, and in the equilibrium state. The equilibrium-state luminescence of ETM is used to realize a highly nonlinear optical device with potential applications in nonlinear optical signal processing

    Self-Organization in a Parametrically Coupled Logistic Map Network: A Model for Information Processing in the Visual Cortex

    Full text link

    Stratification of unresponsive patients by an independently validated index of brain complexity.

    Get PDF
    OBJECTIVE: Validating objective, brain-based indices of consciousness in behaviorally unresponsive patients represents a challenge due to the impossibility of obtaining independent evidence through subjective reports. Here we address this problem by first validating a promising metric of consciousness-the Perturbational Complexity Index (PCI)-in a benchmark population who could confirm the presence or absence of consciousness through subjective reports, and then applying the same index to patients with disorders of consciousness (DOCs). METHODS: The benchmark population encompassed 150 healthy controls and communicative brain-injured subjects in various states of conscious wakefulness, disconnected consciousness, and unconsciousness. Receiver operating characteristic curve analysis was performed to define an optimal cutoff for discriminating between the conscious and unconscious conditions. This cutoff was then applied to a cohort of noncommunicative DOC patients (38 in a minimally conscious state [MCS] and 43 in a vegetative state [VS]). RESULTS: We found an empirical cutoff that discriminated with 100% sensitivity and specificity between the conscious and the unconscious conditions in the benchmark population. This cutoff resulted in a sensitivity of 94.7% in detecting MCS and allowed the identification of a number of unresponsive VS patients (9 of 43) with high values of PCI, overlapping with the distribution of the benchmark conscious condition. INTERPRETATION: Given its high sensitivity and specificity in the benchmark and MCS population, PCI offers a reliable, independently validated stratification of unresponsive patients that has important physiopathological and therapeutic implications. In particular, the high-PCI subgroup of VS patients may retain a capacity for consciousness that is not expressed in behavior

    Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine

    Get PDF
    A common endpoint of general anesthetics is behavioral unresponsiveness [1], which is commonly associated with loss of consciousness. However, subjects can become disconnected from the environment while still having conscious experiences, as demonstrated by sleep states associated with dreaming [2]. Among anesthetics, ketamine is remarkable [3] in that it induces profound unresponsiveness, but subjects often report "ketamine dreams" upon emergence from anesthesia [4-9]. Here, we aimed at assessing consciousness during anesthesia with propofol, xenon, and ketamine, independent of behavioral responsiveness. To do so, in 18 healthy volunteers, we measured the complexity of the cortical response to transcranial magnetic stimulation (TMS)-an approach that has proven helpful in assessing objectively the level of consciousness irrespective of sensory processing and motor responses [10]. In addition, upon emergence from anesthesia, we collected reports about conscious experiences during unresponsiveness. Both frontal and parietal TMS elicited a low-amplitude electroencephalographic (EEG) slow wave corresponding to a local pattern of cortical activation with low complexity during propofol anesthesia, a high-amplitude EEG slow wave corresponding to a global, stereotypical pattern of cortical activation with low complexity during xenon anesthesia, and a wakefulness-like, complex spatiotemporal activation pattern during ketamine anesthesia. Crucially, participants reported no conscious experience after emergence from propofol and xenon anesthesia, whereas after ketamine they reported long, vivid dreams unrelated to the external environment. These results are relevant because they suggest that brain complexity may be sensitive to the presence of disconnected consciousness in subjects who are considered unconscious based on behavioral responses. Sarasso, Boly, etal. show that the complexity of the cortical response to TMS is low during propofol and xenon anesthesia but high during ketamine. Crucially, no reports are obtained upon awakening from both propofol and xenon while after ketamine, all subjects report long, vivid dreams, possibly indicating a state of disconnected consciousness
    corecore