632 research outputs found

    Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease.

    Get PDF
    Cerebral small vessel disease is a common condition associated with lacunar stroke, cognitive impairment and significant functional morbidity. White matter hyperintensities and brain atrophy, seen on magnetic resonance imaging, are correlated with increasing disease severity. However, how the two are related remains an open question. To better define the relationship between white matter hyperintensity growth and brain atrophy, we applied a semi-automated magnetic resonance imaging segmentation analysis pipeline to a 3-year longitudinal cohort of 99 subjects with symptomatic small vessel disease, who were followed-up for ≄1 years. Using a novel two-stage warping pipeline with tissue repair step, voxel-by-voxel rate of change maps were calculated for each tissue class (grey matter, white matter, white matter hyperintensities and lacunes) for each individual. These maps capture both the distribution of disease and spatial information showing local rates of growth and atrophy. These were analysed to answer three primary questions: first, is there a relationship between whole brain atrophy and magnetic resonance imaging markers of small vessel disease (white matter hyperintensities or lacune volume)? Second, is there regional variation within the cerebral white matter in the rate of white matter hyperintensity progression? Finally, are there regionally specific relationships between the rates of white matter hyperintensity progression and cortical grey matter atrophy? We demonstrate that the rates of white matter hyperintensity expansion and grey matter atrophy are strongly correlated (Pearson's R = -0.69, P < 1 × 10(-7)), and significant grey matter loss and whole brain atrophy occurs annually (P < 0.05). Additionally, the rate of white matter hyperintensity growth was heterogeneous, occurring more rapidly within long association fasciculi. Using voxel-based quantification (family-wise error corrected P < 0.05), we show the rate of white matter hyperintensity progression is associated with increases in cortical grey matter atrophy rates, in the medial-frontal, orbito-frontal, parietal and occipital regions. Conversely, increased rates of global grey matter atrophy are significantly associated with faster white matter hyperintensity growth in the frontal and parietal regions. Together, these results link the progression of white matter hyperintensities with increasing rates of regional grey matter atrophy, and demonstrate that grey matter atrophy is the major contributor to whole brain atrophy in symptomatic cerebral small vessel disease. These measures provide novel insights into the longitudinal pathogenesis of small vessel disease, and imply that therapies aimed at reducing progression of white matter hyperintensities via end-arteriole damage may protect against secondary brain atrophy and consequent functional morbidity

    Risk and Determinants of Dementia in Patients with Mild Cognitive Impairment and Brain Subcortical Vascular Changes: A Study of Clinical, Neuroimaging, and Biological Markers—The VMCI-Tuscany Study: Rationale, Design, and Methodology

    Get PDF
    Dementia is one of the most disabling conditions. Alzheimer's disease and vascular dementia (VaD) are the most frequent causes. Subcortical VaD is consequent to deep-brain small vessel disease (SVD) and is the most frequent form of VaD. Its pathological hallmarks are ischemic white matter changes and lacunar infarcts. Degenerative and vascular changes often coexist, but mechanisms of interaction are incompletely understood. The term mild cognitive impairment defines a transitional state between normal ageing and dementia. Pre-dementia stages of VaD are also acknowledged (vascular mild cognitive impairment, VMCI). Progression relates mostly to the subcortical VaD type, but determinants of such transition are unknown. Variability of phenotypic expression is not fully explained by severity grade of lesions, as depicted by conventional MRI that is not sensitive to microstructural and metabolic alterations. Advanced neuroimaging techniques seem able to achieve this. Beside hypoperfusion, blood-brain-barrier dysfunction has been also demonstrated in subcortical VaD. The aim of the Vascular Mild Cognitive Impairment Tuscany Study is to expand knowledge about determinants of transition from mild cognitive impairment to dementia in patients with cerebral SVD. This paper summarizes the main aims and methodological aspects of this multicenter, ongoing, observational study enrolling patients affected by VMCI with SVD

    BRAIN DISORDERS ASSOCIATED WITH DEMENTIA

    Get PDF
    This paper addresses the mental decline and dementia of patients suffering from brain disorders. The most common of these neurological illnesses is Alzheimer’s disease, characterized by a progressive atrophy of cortical brain areas. Alzheimer’s disease accounts by far for the largest part of all dementias and is presently one of the most serious disorders, causing an immense burden on patients and society. Vascular dementia is noticed when the brain’s supply of blood is disrupted by strokes or other vessel pathologies and just as in Alzheimer’s this leads to cortical atrophy with almost identical symptoms. Since the distinction between Alzheimer’s and vascular dementia is a gradual one, mixed pathologies are rather common. Rarer causes of dementia are frontotemporal dementia, with pathologies mainly in frontal and temporal brain regions, Parkinson’s disease with atrophy in basal ganglia which leads to motor disturbances and at times to mental decline, Lewy body dementia caused by abnormal deposits in the brain resulting in considerable damages of neural cells, and Huntington’s disease, a genetic disorder with widely dispersed brain atrophy characterized by mixed Alzheimer’s and Parkinson’s symptoms. Presently, for the most part the cease of the progressive course of all these disorders is not possible. The last two disorders mentioned in this paper are normal pressure hydrocephalus, with a reduced absorption of ventricular fluid, and Korsakoff’s syndrome, caused by a deficiency of vitamin B1. In normal pressure hydrocephalus a brain shunt may reverse the pathological symptoms, while a vitamin B1 diet could improve the symptoms of Korsakoff’s syndrome. Diagnosis, symptoms and pathologies of all disorders are presented in this paper

    Empirical support for the vascular apathy hypothesis:A structured review

    Get PDF
    Objectives: A systematic review of the relationship between subclinical small vessel disease (SSVD) in the general population and apathy to examine the hypothesis that apathy has a vascular basis. Methods: We searched for studies on associations between apathy and SSVD, operationalized as white matter hyperintensities (WMH) or white matter diffusivity changes, lacunar infarcts, cerebral microbleeds, decreasing cortical thickness, and perivascular spaces, while also peripheral proxies for SSVD were considered, operationalized as ankle brachial pressure index (ABI), intima media thickness, arterial stiffness, cardio-femoral pulse wave velocity, hypertension, or cardiovascular disease. Only eligible retrospective and prospective observational studies conducted in the general population were included. Results: The 14 studies eligible for review examined the associations between apathy and hypertension (3), ABI (1), arterial stiffness (1), cardiovascular disease (2), WMH (3), white matter diffusivity (2), cerebral microbleeds (1), or cortical thickness (3). Arterial stiffness and white matter diffusivity were not related to apathy, while the associations with cortical thickness were contradictory. Cross-sectional studies in the general population did find evidence of apathy being associated with WMH, CM, cardiovascular disease, hypertension, and ABI, and cardiovascular disease was prospectively associated with apathy. The methodologies of the studies reviewed were too heterogeneous to perform meta-analyses. Conclusions: Although more prospective evidence is needed and vascular depression needs to be controlled for, cardiovascular disease, hypertension, and ABI as proxies for SSVD, and WMH and cerebral microbleeds as direct measures of SSVD have been found to be associated with apathy in the general population, supporting the hypothesis of vascular apathy

    Radiological assessment of dementia: the Italian inter-society consensus for a practical and clinically oriented guide to image acquisition, evaluation, and reporting

    Get PDF
    Background: Radiological evaluation of dementia is expected to increase more and more in routine practice due to both the primary role of neuroimaging in the diagnostic pathway and the increasing incidence of the disease. Despite this, radiologists often do not follow a disease-oriented approach to image interpretation, for several reasons, leading to reports of limited value to clinicians. In our work, through an intersocietal consensus on the main mandatory knowledge about dementia, we proposed a disease-oriented protocol to optimize and standardize the acquisition/evaluation/interpretation and reporting of radiological images. Our main purpose is to provide a practical guideline for the radiologist to help increase the effectiveness of interdisciplinary dialogue and diagnostic accuracy in daily practice. Results: We defined key clinical and imaging features of the dementias (A), recommended MRI protocol (B), proposed a disease-oriented imaging evaluation and interpretation (C) and report (D) with a glimpse to future avenues (E). The proposed radiological practice is to systematically evaluate and score atrophy, white matter changes, microbleeds, small vessel disease, consider the use of quantitative measures using commercial software tools critically, and adopt a structured disease-oriented report. In the expanding field of cognitive disorders, the only effective assessment approach is the standardized disease-oriented one, which includes a multidisciplinary integration of the clinical picture, MRI, CSF and blood biomarkers and nuclear medicine

    Small vessel disease burden and functional brain connectivity in mild cognitive impairment

    Get PDF
    Background: The role of small vessel disease in the development of dementia is not yet completely understood. Functional brain connectivity has been shown to differ between individuals with and without cerebral small vessel disease. However, a comprehensive measure of small vessel disease quantifying the overall damage on the brain is not consistently used and studies using such measure in mild cognitive impairment individuals are missing.Method: Functional brain connectivity differences were analyzed between mild cognitive impairment individuals with absent or low (n = 34) and high (n = 34) small vessel disease burden using data from the Parelsnoer Institute, a Dutch multicenter study. Small vessel disease was characterized using an ordinal scale considering: lacunes, microbleeds, perivascular spaces in the basal ganglia, and white matter hyperintensities. Resting state functional MRI data using 3 Tesla scanners was analyzed with group-independent component analysis using the CONN toolbox.Results: Functional connectivity between areas of the cerebellum and between the cerebellum and the thalamus and caudate nucleus was higher in the absent or low small vessel disease group compared to the high small vessel disease group.Conclusion: These findings might suggest that functional connectivity of mild cognitive impairment individuals with low or absent small vessel disease burden is more intact than in mild cognitive impairment individuals with high small vessel disease. These brain areas are mainly responsible for motor, attentional and executive functions, domains which in previous studies were found to be mostly associated with small vessel disease markers. Our results support findings on the involvement of the cerebellum in cognitive functioning

    Acute modulation of brain connectivity in Parkinson disease after automatic mechanical peripheral stimulation: A pilot study

    Get PDF
    The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease.Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition.Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79).Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration.This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest.Clinical Trials.gov NCT01815281
    • 

    corecore