101 research outputs found

    Advances in Clinical Neurophysiology

    Get PDF
    Including some of the newest advances in the field of neurophysiology, this book can be considered as one of the treasures that interested scientists would like to collect. It discusses many disciplines of clinical neurophysiology that are, currently, crucial in the practice as they explain methods and findings of techniques that help to improve diagnosis and to ensure better treatment. While trying to rely on evidence-based facts, this book presents some new ideas to be applied and tested in the clinical practice. Advances in Clinical Neurophysiology is important not only for the neurophysiologists but also for clinicians interested or working in wide range of specialties such as neurology, neurosurgery, intensive care units, pediatrics and so on. Generally, this book is written and designed to all those involved in, interpreting or requesting neurophysiologic tests

    Neural dynamics of selective attention to speech in noise

    Get PDF
    This thesis investigates how the neural system instantiates selective attention to speech in challenging acoustic conditions, such as spectral degradation and the presence of background noise. Four studies using behavioural measures, magneto- and electroencephalography (M/EEG) recordings were conducted in younger (20–30 years) and older participants (60–80 years). The overall results can be summarized as follows. An EEG experiment demonstrated that slow negative potentials reflect participants’ enhanced allocation of attention when they are faced with more degraded acoustics. This basic mechanism of attention allocation was preserved at an older age. A follow-up experiment in younger listeners indicated that attention allocation can be further enhanced in a context of increased task-relevance through monetary incentives. A subsequent study focused on brain oscillatory dynamics in a demanding speech comprehension task. The power of neural alpha oscillations (~10 Hz) reflected a decrease in demands on attention with increasing acoustic detail and critically also with increasing predictiveness of the upcoming speech content. Older listeners’ behavioural responses and alpha power dynamics were stronger affected by acoustic detail compared with younger listeners, indicating that selective attention at an older age is particularly dependent on the sensory input signal. An additional analysis of listeners’ neural phase-locking to the temporal envelopes of attended speech and unattended background speech revealed that younger and older listeners show a similar segregation of attended and unattended speech on a neural level. A dichotic listening experiment in the MEG aimed at investigating how neural alpha oscillations support selective attention to speech. Lateralized alpha power modulations in parietal and auditory cortex regions predicted listeners’ focus of attention (i.e., left vs right). This suggests that alpha oscillations implement an attentional filter mechanism to enhance the signal and to suppress noise. A final behavioural study asked whether acoustic and semantic aspects of task-irrelevant speech determine how much it interferes with attention to task-relevant speech. Results demonstrated that younger and older adults were more distracted when acoustic detail of irrelevant speech was enhanced, whereas predictiveness of irrelevant speech had no effect. All findings of this thesis are integrated in an initial framework for the role of attention for speech comprehension under demanding acoustic conditions

    Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain

    Get PDF
    Magnetoencephalography (MEG) is a noninvasive technique for investigating neuronal activity in the living human brain. The time resolution of the method is better than 1 ms and the spatial discrimination is, under favorable circumstances, 2-3 mm for sources in the cerebral cortex. In MEG studies, the weak 10 fT-1 pT magnetic fields produced by electric currents flowing in neurons are measured with multichannel SQUID (superconducting quantum interference device) gradiometers. The sites in the cerebral cortex that are activated by a stimulus can be found from the detected magnetic-field distribution, provided that appropriate assumptions about the source render the solution of the inverse problem unique. Many interesting properties of the working human brain can be studied, including spontaneous activity and signal processing following external stimuli. For clinical purposes, determination of the locations of epileptic foci is of interest. The authors begin with a general introduction and a short discussion of the neural basis of MEG. The mathematical theory of the method is then explained in detail, followed by a thorough description of MEG instrumentation, data analysis, and practical construction of multi-SQUID devices. Finally, several MEG experiments performed in the authors' laboratory are described, covering studies of evoked responses and of spontaneous activity in both healthy and diseased brains. Many MEG studies by other groups are discussed briefly as well.Peer reviewe

    Development of a practical and mobile brain-computer communication device for profoundly paralyzed individuals

    Full text link
    Thesis (Ph.D.)--Boston UniversityBrain-computer interface (BCI) technology has seen tremendous growth over the past several decades, with numerous groundbreaking research studies demonstrating technical viability (Sellers et al., 2010; Silvoni et al., 2011). Despite this progress, BCIs have remained primarily in controlled laboratory settings. This dissertation proffers a blueprint for translating research-grade BCI systems into real-world applications that are noninvasive and fully portable, and that employ intelligent user interfaces for communication. The proposed architecture is designed to be used by severely motor-impaired individuals, such as those with locked-in syndrome, while reducing the effort and cognitive load needed to communicate. Such a system requires the merging of two primary research fields: 1) electroencephalography (EEG)-based BCIs and 2) intelligent user interface design. The EEG-based BCI portion of this dissertation provides a history of the field, details of our software and hardware implementation, and results from an experimental study aimed at verifying the utility of a BCI based on the steady-state visual evoked potential (SSVEP), a robust brain response to visual stimulation at controlled frequencies. The visual stimulation, feature extraction, and classification algorithms for the BCI were specially designed to achieve successful real-time performance on a laptop computer. Also, the BCI was developed in Python, an open-source programming language that combines programming ease with effective handling of hardware and software requirements. The result of this work was The Unlock Project app software for BCI development. Using it, a four-choice SSVEP BCI setup was implemented and tested with five severely motor-impaired and fourteen control participants. The system showed a wide range of usability across participants, with classification rates ranging from 25-95%. The second portion of the dissertation discusses the viability of intelligent user interface design as a method for obtaining a more user-focused vocal output communication aid tailored to motor-impaired individuals. A proposed blueprint of this communication "app" was developed in this dissertation. It would make use of readily available laptop sensors to perform facial recognition, speech-to-text decoding, and geo-location. The ultimate goal is to couple sensor information with natural language processing to construct an intelligent user interface that shapes communication in a practical SSVEP-based BCI

    Work Toward a Theory of Brain Function

    Get PDF
    This dissertation reports research from 1971 to the present, performed in three parts. The first part arose from unilateral electrical stimulation of motivational/reward pathways in the lateral hypothalamus and brain stem of “split-brain” cats, in which the great cerebral commissures were surgically divided. This showed that motivation systems in split-brain animals exert joint influence upon learning in both of the divided cerebral hemispheres, in contrast to the separation of cognitive functions produced by commissurotomy. However, attempts to identify separate signatures of electrocortical activity associated with the diffuse motivational/alerting effects and those of the cortically lateralised processes failed to achieve this goal, and showed that an adequate model of cerebral information processing was lacking. The second part describes how this recognition of inadequacy led into computer simulations of large populations of cortical neurons – work which slowly led my colleagues and me to successful explanations of mechanisms for cortical synchrony and oscillation, and of evoked potentials and the global EEG. These results complemented the work of overseas groups led by Nunez, by Freeman, by Lopes da Silva and others, but also differed from the directions taken by these workers in certain important respects. It became possible to conceive of information transfer in the active cortex as a series of punctuated synchronous equilibria of signal exchange among cortical neurons – equilibria reached repeatedly, with sequential perturbations of the neural activity away from equilibrium caused by exogenous inputs and endogenous pulse-bursting, thus forming a basis for cognitive sequences. The third part reports how the explanation of synchrony gave rise to a new theory of the regulation of embryonic cortical growth and the emergence of mature functional connections. This work was based upon very different assumptions, and reaches very different conclusions, to that of pioneers of the field such as Hubel and Wiesel, whose ideas have dominated cortical physiology for more than fifty years. In conclusion, findings from all the stages of this research are linked together, to show they provide a sketch of the working brain, fitting within and helping to unify wider contemporary concepts of brain function

    Spatiotemporal techniques in multimodal imaging for brain mapping and epilepsy

    Full text link
    Thesis (Ph.D.)--Boston UniversityThis thesis explored multimodal brain imaging using advanced spatiotemporal techniques. The first set of experiments were based on simulations. Much controversy exists in the literature regarding the differences between magnetoencephalography (MEG) and electroencephalography (EEG}, both practically and theoretically. The differences were explored using simulations that evaluated the expected signal-to-noise ratios from reasonable brain sources. MEG and EEG were found to be complementary, with each modality optimally suited to image activity from different areas of the cortical surface. Consequently, evaluations of epileptic patients and general neuroscience experiments will both benefit from simultaneously collected MEG/EEG. The second set of experiments represent an example of MEG combined with magnetic resonance imaging (MRI) and functional MRI (fMRI) applied to healthy subjects. The study set out to resolve two questions relating to shape perception. First, does the brain activate functional areas sequentially during shape perception, as has been suggested in recent literature? Second, which , if any, functional areas are active time-locked with reaction-time? The study found that functional areas are non-sequentially activated, and that area IT is active time-locked with reaction-time. These two points, coupled with the method for multimodal integration , can help further develop our understanding of shape perception in particular, and cortical dynamics in general for healthy subjects. Broadly, these two studies represent practical guidelines for epilepsy evaluations and brain mapping studies. For epilepsy studies, clinicians could combine MEG and EEG to maximize the probability of finding the source of seizures. For brain mapping in general, EEG, MEG, MRI and fMRI can be combined in the methods outlined here to obtain more sophisticated views of cortical dynamics

    Waves and Words: Oscillatory activity and language processing

    Get PDF
    Successful language comprehension depends not only on the involvement of different domain-specific linguistic processes, but also on their respective time-courses. Both aspects of the comprehension process can be examined by means of event-related brain potentials (ERPs), which not only provide a direct reflection of human brain activity within the millisecond range, but also allow for a qualitative dissociation between different language-related processing domains. However, recent ERP findings indicate that the desired one-to-one mapping between ERP components and linguistic processes cannot be upheld, thus leading to an interpretative uncertainty. This thesis presents a fundamentally new analysis technique for language-based ERP components, which aims to address the ambiguity associated with traditional language-related ERP effects. It is argued that this new method, which supplements ERP measures with corresponding frequency-based analyses, not only allows for a differentiation of ERP components on the basis of activity in distinct frequency bands and underlying dynamic behaviour (in terms of power changes and/or phase locking), but also provides further insights into the functional organisation of the language comprehension system and its inherent complexity. On the basis of 5 EEG experiments, I show (1) that it is possible to dissociate two superficially indistinguishable language-related ERP components on the basis of their respective underlying frequency characteristics (Experiment 1), thereby resolving the vagueness of interpretation inherent to the ERP components themselves; (2) that the processing nature of the ‘classical’ semantic N400 effect can be unambiguously specified in terms of its underlying frequency characteristics, i.e. in terms of (evoked and whole) power and phase-locking differences in specific frequency bands, thereby allowing for a first interpretative categorisation of the N400 effect with respect to its underlying neuronal processing dynamics; and (3) that frequency-based analyses may be employed to distinguish the semantic N400 effect from N400-like effects that appear in contexts which cannot readily be characterised as semantic-interpretative processes. Experiments 2 – 5 investigated the processing of antonym relations under different task conditions. Whereas in Experiment 2, the processing of antonym pairs (black – white) was compared to that of related (black – yellow) and non-related (black – nice) word pairs in a sentence context, Experiments 3 to 5 presented isolated word pairs. The frequency-based analysis showed that the observed N400 effects were not uniform in nature, but rather resulted from the superposition of functionally different frequency components. Task-relevant targets elicited a specific frequency modulation, which showed up as a P300-like positivity in terms of ERP measures. In addition, lexical-semantic processing elicited a pronounced increase in a different frequency range that was independent of the experimental context. For antonyms (Experiments 2 and 3), the task-related positive component appeared almost simultaneously to the N400 deflection for non-related words, thereby giving rise to a substantial N400 effect. In contrast, for pseudowords (Experiment 5), this positivity appeared in temporal succession to the N400. In sum, in the present results provide converging evidence that N400 effects should not be regarded as functionally uniform. Depending on the respective task and stimulus manipulations, the N400 effect appears as a result of the superposition of functionally different activities, which can be clearly distinguished in terms of their underlying frequency characteristics. In this way, the proposed frequency-based methods directly bear upon the interpretation of language-related ERP effects and thus have straightforward consequences for psycholinguistic theory. In view of the phenomenon that language-related processes have, in a number of cases, been directly attributed to the lexical-semantic processing domain on account of the observation of an N400, these results not only call for a reinterpretation of previous findings but also for a reinterpretation of their theoretical consequences

    A model for cerebral cortical neuron group electric activity and its implications for cerebral function

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 245-265).The electroencephalogram, or EEG, is a recording of the field potential generated by the electric activity of neuronal populations of the brain. Its utility has long been recognized as a monitor which reflects the vigilance states of the brain, such as arousal, drowsiness, and sleep stages. Moreover, it is used to detect pathological conditions such as seizures, to calibrate drug action during anesthesia, and to understand cognitive task signatures in healthy and abnormal subjects. Being an aggregate measure of neural activity, understanding the neural origins of EEG oscillations has been limited. With the advent of recording techniques, however, and as an influx of experimental evidence on cellular and network properties of the neocortex has become available, a closer look into the neuronal mechanisms for EEG generation is warranted. Accordingly, we introduce an effective neuronal skeleton circuit at a neuronal group level which could reproduce basic EEG-observable slow ( 3mm). The effective circuit makes use of the dynamic properties of the layer 5 network to explain intra-cortically generated augmenting responses, restful alpha, slow wave (< 1Hz) oscillations, and disinhibition-induced seizures. Based on recent cellular evidence, we propose a hierarchical binding mechanism in tufted layer 5 cells which acts as a controlled gate between local cortical activity and inputs arriving from distant cortical areas. This gate is manifested by the switch in output firing patterns in tufted(cont.) layer 5 cells between burst firing and regular spiking, with specific implications on local functional connectivity. This hypothesized mechanism provides an explanation of different alpha band (10Hz) oscillations observed recently under cognitive states. In particular, evoked alpha rhythms, which occur transiently after an input stimulus, could account for initial reogranization of local neural activity based on (mis)match between driving inputs and modulatory feedback of higher order cortical structures, or internal expectations. Emitted alpha rhythms, on the other hand, is an example of extreme attention where dominance of higher order control inputs could drive reorganization of local cortical activity. Finally, the model makes predictions on the role of burst firing patterns in tufted layer 5 cells in redefining local cortical dynamics, based on internal representations, as a prelude to high frequency oscillations observed in various sensory systems during cognition.by Fadi Nabih Karameh.Ph.D
    • …
    corecore