70 research outputs found

    Cortical Surface Registration and Shape Analysis

    Get PDF
    A population analysis of human cortical morphometry is critical for insights into brain development or degeneration. Such an analysis allows for investigating sulcal and gyral folding patterns. In general, such a population analysis requires both a well-established cortical correspondence and a well-defined quantification of the cortical morphometry. The highly folded and convoluted structures render a reliable and consistent population analysis challenging. Three key challenges have been identified for such an analysis: 1) consistent sulcal landmark extraction from the cortical surface to guide better cortical correspondence, 2) a correspondence establishment for a reliable and stable population analysis, and 3) quantification of the cortical folding in a more reliable and biologically meaningful fashion. The main focus of this dissertation is to develop a fully automatic pipeline that supports a population analysis of local cortical folding changes. My proposed pipeline consists of three novel components I developed to overcome the challenges in the population analysis: 1) automatic sulcal curve extraction for stable/reliable anatomical landmark selection, 2) group-wise registration for establishing cortical shape correspondence across a population with no template selection bias, and 3) quantification of local cortical folding using a novel cortical-shape-adaptive kernel. To evaluate my methodological contributions, I applied all of them in an application to early postnatal brain development. I studied the human cortical morphological development using the proposed quantification of local cortical folding from neonate age to 1 year and 2 years of age, with quantitative developmental assessments. This study revealed a novel pattern of associations between the cortical gyrification and cognitive development.Doctor of Philosoph

    The Brains of Babies: A Surface Based Approach To Study Cortical Development in Term and Preterm Human Infants

    Get PDF
    Half a million infants are born before term gestation each year in the United States. Although advances in newborn medicine have increased survival rates of very preterm infants to almost 90%, surviving preterm infants are at increased risk for developing lasting neurologic impairments. In order to develop a plausible neuroprotective strategy it is imperative that we improve our understanding of normal cortical development and develop tools to evaluate injury. Using a surface based approach we have characterized normal cortical development in healthy term infants and analyzed abnormalities associated with preterm birth. Accurate cortical surface reconstructions for each hemisphere of 12 healthy term gestation infants and 12 low-risk preterm infants at term equivalent postmenstrual age were generated from structural magnetic resonance imaging data using a novel segmentation algorithm. Data from the 12 term infants were used to establish the first population average surface based atlas of human cerebral cortex at term gestation. Comparing this atlas to a previously established atlas of adult cortex revealed that cortical structure in term infants is similar to the adult in many respects, including the pattern of individual variability and the presence of statistically significant structural asymmetries in lateral temporal cortex, suggesting that that several features of cortical shape are minimally reliant on the postnatal environment. Surprisingly, the pattern of postnatal expansion in surface area is strikingly non-uniform; regions of lateral temporal, parietal, and frontal cortex expand nearly twice as much as other regions in insular and medial occipital cortex. Differential expansion may point to differential sensitivity of cortical circuits to normal or aberrant childhood experiences. The pattern of human postnatal expansion parallels the pattern of evolutionary cortical expansion revealed by comparison between the human and the macaque monkey. Finally, in comparing term and preterm infants, region-specific alterations in cortical folding in the preterm population were found. The most striking shape differences were present in the orbitofrontal and inferior occipital regions with reductions in folding in the insular, lateral temporal, lateral parietal, and lateral frontal cortex. Overall these findings improve our understanding of normal cortical development and help elucidate the potential pathways for cortical injury in preterm infants

    Building connectomes using diffusion MRI: why, how and but

    Get PDF
    Why has diffusion MRI become a principal modality for mapping connectomes in vivo? How do different image acquisition parameters, fiber tracking algorithms and other methodological choices affect connectome estimation? What are the main factors that dictate the success and failure of connectome reconstruction? These are some of the key questions that we aim to address in this review. We provide an overview of the key methods that can be used to estimate the nodes and edges of macroscale connectomes, and we discuss open problems and inherent limitations. We argue that diffusion MRI-based connectome mapping methods are still in their infancy and caution against blind application of deep white matter tractography due to the challenges inherent to connectome reconstruction. We review a number of studies that provide evidence of useful microstructural and network properties that can be extracted in various independent and biologically-relevant contexts. Finally, we highlight some of the key deficiencies of current macroscale connectome mapping methodologies and motivate future developments

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Examining the development of brain structure in utero with fetal MRI, acquired as part of the Developing Human Connectome Project

    Get PDF
    The human brain is an incredibly complex organ, and the study of it traverses many scales across space and time. The development of the brain is a protracted process that begins embryonically but continues into adulthood. Although neural circuits have the capacity to adapt and are modulated throughout life, the major structural foundations are laid in utero during the fetal period, through a series of rapid but precisely timed, dynamic processes. These include neuronal proliferation, migration, differentiation, axonal pathfinding, and myelination, to name a few. The fetal origins of disease hypothesis proposed that a variety of non-communicable diseases emerging in childhood and adulthood could be traced back to a series of risk factors effecting neurodevelopment in utero (Barker 1995). Since this publication, many studies have shown that the structural scaffolding of the brain is vulnerable to external environmental influences and the perinatal developmental window is a crucial determinant of neurological health later in life. However, there remain many fundamental gaps in our understanding of it. The study of human brain development is riddled with biophysical, ethical, and technical challenges. The Developing Human Connectome Project (dHCP) was designed to tackle these specific challenges and produce high quality open-access perinatal MRI data, to enable researchers to investigate normal and abnormal neurodevelopment (Edwards et al., 2022). This thesis will focus on investigating the diffusion-weighted and anatomical (T2) imaging data acquired in the fetal period, between the second to third trimester (22 – 37 gestational weeks). The limitations of fetal MR data are ill-defined due to a lack of literature and therefore this thesis aims to explore the data through a series of critical and strategic analysis approaches that are mindful of the biophysical challenges associated with fetal imaging. A variety of analysis approaches are optimised to quantify structural brain development in utero, exploring avenues to relate the changes in MR signal to possible neurobiological correlates. In doing so, the work in this thesis aims to improve mechanistic understanding about how the human brain develops in utero, providing the clinical and medical imaging community with a normative reference point. To this aim, this thesis investigates fetal neurodevelopment with advanced in utero MRI methods, with a particular emphasis on diffusion MRI. Initially, the first chapter outlines a descriptive, average trajectory of diffusion metrics in different white matter fiber bundles across the second to third trimester. This work identified unique polynomial trajectories in diffusion metrics that characterise white matter development (Wilson et al., 2021). Guided by previous literature on the sensitivity of DWI to cellular processes, I formulated a hypothesis about the biophysical correlates of diffusion signal components that might underpin this trend in transitioning microstructure. This hypothesis accounted for the high sensitivity of the diffusion signal to a multitude of simultaneously occurring processes, such as the dissipating radial glial scaffold, commencement of pre-myelination and arborization of dendritic trees. In the next chapter, the methods were adapted to address this hypothesis by introducing another dimension, and charting changes in diffusion properties along developing fiber pathways. With this approach it was possible to identify compartment-specific microstructural maturation, refining the spatial and temporal specificity (Wilson et al., 2023). The results reveal that the dynamic fluctuations in the components of the diffusion signal correlate with observations from previous histological work. Overall, this work allowed me to consolidate my interpretation of the changing diffusion signal from the first chapter. It also serves to improve understanding about how diffusion signal properties are affected by processes in transient compartments of the fetal brain. The third chapter of this thesis addresses the hypothesis that cortical gyrification is influenced by both underlying fiber connectivity and cytoarchitecture. Using the same fetal imaging dataset, I analyse the tissue microstructural change underlying the formation of cortical folds. I investigate correlations between macrostructural surface features (curvature, sulcal depth) and tissue microstructural measures (diffusion tensor metrics, and multi-shell multi-tissue decomposition) in the subplate and cortical plate across gestational age, exploring this relationship both at the population level and within subjects. This study provides empirical evidence to support the hypotheses that microstructural properties in the subplate and cortical plate are altered with the development of sulci. The final chapter explores the data without anatomical priors, using a data-driven method to extract components that represent coordinated structural maturation. This analysis aims to examine if brain regions with coherent patterns of growth over the fetal period converge on neonatal functional networks. I extract spatially independent features from the anatomical imaging data and quantify the spatial overlap with pre-defined neonatal resting state networks. I hypothesised that coherent spatial patterns of anatomical development over the fetal period would map onto the functional networks observed in the neonatal period. Overall, this thesis provides new insight about the developmental contrast over the second to third trimester of human development, and the biophysical correlates affecting T2 and diffusion MR signal. The results highlight the utility of fetal MRI to research critical mechanisms of structural brain maturation in utero, including white matter development and cortical gyrification, bridging scales from neurobiological processes to whole brain macrostructure. their gendered constructions relating to women

    The Human Connectome Project's neuroimaging approach

    Get PDF
    Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease

    Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training

    Get PDF
    The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow (tertiary) sulcal regions are largely overlooked in the literature due to the scarcity of manual/well-defined annotations and their large neuroanatomical variability. In this paper, we present an automated framework for regional labeling of both primary/secondary and tertiary sulci of the dorsal portion of lateral prefrontal cortex (LPFC) using spherical convolutional neural networks. We propose two core components that enhance the inference of sulcal labels to overcome such large neuroanatomical variability: (1) surface data augmentation and (2) context-aware training. (1) To take into account neuroanatomical variability, we synthesize training data from the proposed feature space that embeds intermediate deformation trajectories of spherical data in a rigid to non-rigid fashion, which bridges an augmentation gap in conventional rotation data augmentation. (2) Moreover, we design a two-stage training process to improve labeling accuracy of tertiary sulci by informing the biological associations in neuroanatomy: inference of primary/secondary sulci and then their spatial likelihood to guide the definition of tertiary sulci. In the experiments, we evaluate our method on 13 deep and shallow sulci of human LPFC in two independent data sets with different age ranges: pediatric (N=60) and adult (N=36) cohorts. We compare the proposed method with a conventional multi-atlas approach and spherical convolutional neural networks without/with rotation data augmentation. In both cohorts, the proposed data augmentation improves labeling accuracy of deep and shallow sulci over the baselines, and the proposed context-aware training offers further improvement in the labeling of shallow sulci over the proposed data augmentation. We share our tools with the field and discuss applications of our results for understanding neuroanatomical-functional organization of LPFC and the rest of cortex (https://github.com/ilwoolyu/SphericalLabeling). ?? 2021 The Author(s

    Mapping connections in the neonatal brain with magnetic resonance imaging

    Get PDF
    The neonatal brain undergoes rapid development after birth, including the growth and maturation of the white matter fibre bundles that connect brain regions. Diffusion MRI (dMRI) is a unique tool for mapping these bundles in vivo, providing insight into factors that impact the development of white matter and how its maturation influences other developmental processes. However, most studies of neonatal white matter do not use specialised analysis tools, instead using tools that have been developed for the adult brain. However, the neonatal brain is not simply a small adult brain, as differences in geometry and tissue decomposition cause considerable differences in dMRI contrast. In this thesis, methods are developed to map white matter connections during this early stage of neurodevelopment. First, two contrasting approaches are explored: ROI-constrained protocols for mapping individual tracts, and the generation of whole-brain connectomes that capture the developing brain's full connectivity profile. The impact of the gyral bias, a methodological confound of tractography, is quantified and compared with the equivalent measurements for adult data. These connectomes form the basis for a novel, data-driven framework, in which they are decomposed into white matter bundles and their corresponding grey matter terminations. Independent component analysis and non-negative matrix factorisation are compared for the decomposition, and are evaluated against in-silico simulations. Data-driven components of dMRI tractography data are compared with manual tractography, and networks obtained from resting-state functional MRI. The framework is further developed to provide corresponding components between groups and individuals. The data-driven components are used to generate cortical parcellations, which are stable across subjects. Finally, some future applications are outlined that extend the use of these methods beyond the context of neonatal imaging, in order to bridge the gap between functional and structural analysis paradigms, and to chart the development of white matter throughout the lifespan and across species

    Functional Brain Organization in Space and Time

    Get PDF
    The brain is a network functionally organized at many spatial and temporal scales. To understand how the brain processes information, controls behavior and dynamically adapts to an ever-changing environment, it is critical to have a comprehensive description of the constituent elements of this network and how relationships between these elements may change over time. Decades of lesion studies, anatomical tract-tracing, and electrophysiological recording have given insight into this functional organization. Recently, however, resting state functional magnetic resonance imaging (fMRI) has emerged as a powerful tool for whole-brain non-invasive measurement of spontaneous neural activity in humans, giving ready access to macroscopic scales of functional organization previously much more difficult to obtain. This thesis aims to harness the unique combination of spatial and temporal resolution provided by functional MRI to explore the spatial and temporal properties of the functional organization of the brain. First, we establish an approach for defining cortical areas using transitions in correlated patterns of spontaneous BOLD activity (Chapter 2). We then propose and apply measures of internal and external validity to evaluate the credibility of the areal parcellation generated by this technique (Chapter 3). In chapter 4, we extend the study of functional brain organization to a highly sampled individual. We describe the idiosyncratic areal and systems-level organization of the individual relative to a standard group-average description. Further, we develop a model describing the reliability of BOLD correlation estimates across days that accounts for relevant sources of variability. Finally, in Chapter 5, we examine whether BOLD correlations meaningfully vary over the course of single resting-state scans
    corecore