172 research outputs found

    Joint Reconstruction and Parcellation of Cortical Surfaces

    Full text link
    The reconstruction of cerebral cortex surfaces from brain MRI scans is instrumental for the analysis of brain morphology and the detection of cortical thinning in neurodegenerative diseases like Alzheimer's disease (AD). Moreover, for a fine-grained analysis of atrophy patterns, the parcellation of the cortical surfaces into individual brain regions is required. For the former task, powerful deep learning approaches, which provide highly accurate brain surfaces of tissue boundaries from input MRI scans in seconds, have recently been proposed. However, these methods do not come with the ability to provide a parcellation of the reconstructed surfaces. Instead, separate brain-parcellation methods have been developed, which typically consider the cortical surfaces as given, often computed beforehand with FreeSurfer. In this work, we propose two options, one based on a graph classification branch and another based on a novel generic 3D reconstruction loss, to augment template-deformation algorithms such that the surface meshes directly come with an atlas-based brain parcellation. By combining both options with two of the latest cortical surface reconstruction algorithms, we attain highly accurate parcellations with a Dice score of 90.2 (graph classification branch) and 90.4 (novel reconstruction loss) together with state-of-the-art surfaces.Comment: accepted at MLCN workshop 202

    Non-Euclidean, convolutional learning on cortical brain surfaces

    Get PDF
    In recent years there have been many studies indicating that multiple cortical features, extracted at each surface vertex, are promising in the detection of various neurodevelopmental and neurodegenerative diseases. However, with limited datasets, it is challenging to train stable classifiers with such high-dimensional surface data. This necessitates a feature reduction that is commonly accomplished via regional volumetric morphometry from standard brain atlases. However, current regional summaries are not specific to the given age or pathology that is studied, which runs the risk of losing relevant information that can be critical in the classification process. To solve this issue, this paper proposes a novel data-driven approach by extending convolutional neural networks (CNN) for use on non-Euclidean manifolds such as cortical surfaces. The proposed network learns the most powerful features and brain regions from the extracted large dimensional feature space; thus creating a new feature space in which the dimensionality is reduced and feature distributions are better separated. We demonstrate the usability of the proposed surface-CNN framework in an example study classifying Alzheimers disease patients versus normal controls. The high performance in the cross-validation diagnostic results shows the potential of our proposed prediction system

    SPHARM-Net: Spherical Harmonics-based Convolution for Cortical Parcellation

    Get PDF
    Department of Computer Science and EngineeringWe present a spherical harmonics-based convolutional neural network (CNN) for cortical parcellation, which we call SPHARM-Net. Recent advances in CNNs offer cortical parcellation on a fine-grained triangle mesh of the cortex. Yet, most CNNs designed for cortical parcellation employ spatial convolution that depends on extensive data augmentation and allows only predefined neighborhoods of specific spherical tessellation. On the other hand, a rotation-equivariant convolutional filter avoids data augmentation, and rotational equivariance can be achieved in spectral convolution independent of a neighborhood definition. Nevertheless, the limited resources of a modern machine enable only a finite set of spectral components that might lose geometric details. In this work, we propose (1) a constrained spherical convolutional filter that supports an infinite set of spectral components and (2) an end-to-end framework without data augmentation. The proposed filter encodes all the spectral components without the full expansion of spherical harmonics. We show that rotational equivariance drastically reduces the training time while achieving accurate cortical parcellation. Furthermore, the proposed convolution is fully composed of matrix transformations, which offers efficient and fast spectral processing. In the experiments, we validate SPHARM-Net on two public datasets with manual labels: Mindboggle-101 (N=101) and NAMIC (N=39). The experimental results show that the proposed method outperforms the state-of-the-art methods on both datasets even with fewer learnable parameters without rigid alignment and data augmentation. Our code is publicly available at https://github.com/Shape-Lab/SPHARM-Net.ope

    JOSA: Joint surface-based registration and atlas construction of brain geometry and function

    Full text link
    Surface-based cortical registration is an important topic in medical image analysis and facilitates many downstream applications. Current approaches for cortical registration are mainly driven by geometric features, such as sulcal depth and curvature, and often assume that registration of folding patterns leads to alignment of brain function. However, functional variability of anatomically corresponding areas across subjects has been widely reported, particularly in higher-order cognitive areas. In this work, we present JOSA, a novel cortical registration framework that jointly models the mismatch between geometry and function while simultaneously learning an unbiased population-specific atlas. Using a semi-supervised training strategy, JOSA achieves superior registration performance in both geometry and function to the state-of-the-art methods but without requiring functional data at inference. This learning framework can be extended to any auxiliary data to guide spherical registration that is available during training but is difficult or impossible to obtain during inference, such as parcellations, architectonic identity, transcriptomic information, and molecular profiles. By recognizing the mismatch between geometry and function, JOSA provides new insights into the future development of registration methods using joint analysis of the brain structure and function.Comment: A. V. Dalca and B. Fischl are co-senior authors with equal contribution. arXiv admin note: text overlap with arXiv:2303.0159
    corecore