264 research outputs found

    Making Waves in the Brain: What Are Oscillations, and Why Modulating Them Makes Sense for Brain Injury.

    Get PDF
    Traumatic brain injury (TBI) can result in persistent cognitive, behavioral and emotional deficits. However, the vast majority of patients are not chronically hospitalized; rather they have to manage their disabilities once they are discharged to home. Promoting recovery to pre-injury level is important from a patient care as well as a societal perspective. Electrical neuromodulation is one approach that has shown promise in alleviating symptoms associated with neurological disorders such as in Parkinson's disease (PD) and epilepsy. Consistent with this perspective, both animal and clinical studies have revealed that TBI alters physiological oscillatory rhythms. More recently several studies demonstrated that low frequency stimulation improves cognitive outcome in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta frequency entrained oscillations and improved spatial learning following TBI. In order to evaluate the potential of electrical deep brain stimulation for clinical translation we review the basic neurophysiology of oscillations, their role in cognition and how they are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical and clinical studies to consider, with the hope that it will promote a hypothesis driven approach to subsequent experimental designs and ultimately successful translation to improve outcome in patients with TBI

    The roles of the Robo2 and Robo3 receptors in the development of cortical interneurons and Cajal-Retzius cells

    Get PDF
    This thesis focuses on the putative roles of the Robo2 and Robo3 receptors in regulating the development of cortical interneurons and Cajal-Retzius cells in the embryonic mouse forebrain. A detailed analysis of the expression patterns of the Robo3 receptor is elucidated for the first time. Further comparison of all three Robos with interneuron markers confirms that different populations of cortical interneurons express these receptors during development. The putative roles of the Robo2 and Robo3 receptors in specifying the total number and distribution of cortical interneurons during development is investigated in vivo, using transgenic mice deficient in these receptors. This analysis shows that removal of the Robo2 or Robo3 receptors alone does not result in significant changes in the total numbers or positioning of interneurons within the cortex, suggesting that these receptors are not involved in the ventral-dorsal tangential migration of interneurons from their origins within the ganglionic eminences to the cortex. However, both Robo2 and Robo3 receptors significantly regulate the morphology of migrating interneurons during development. Preliminary analysis in triple Robo mutant mice points to a complex interplay between these receptors, and highlights the importance of understanding the functional relationship between these. In addition, a population of pioneering Cajal- Retzius cells express Robo receptors during preplate stages of development. Analysis in single Robo mutant animals suggests that Robo2 has a role in determining the total numbers of (reelin immunopositive) Cajal-Retzius cells within the hippocampal cortex

    Ongoing Spontaneous Activity Controls Access to Consciousness: A Neuronal Model for Inattentional Blindness

    Get PDF
    Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden “ignition” of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of “inattentional blindness,” in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness

    Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role

    Get PDF
    The lateral geniculate nucleus (LGN) has often been treated in the past as a linear filter that adds little to retinal processing of visual inputs. Here we review anatomical, neurophysiological, brain imaging, and modeling studies that have in recent years built up a much more complex view of LGN . These include effects related to nonlinear dendritic processing, cortical feedback, synchrony and oscillations across LGN populations, as well as involvement of LGN in higher level cognitive processing. Although recent studies have provided valuable insights into early visual processing including the role of LGN, a unified model of LGN responses to real-world objects has not yet been developed. In the light of recent data, we suggest that the role of LGN deserves more careful consideration in developing models of high-level visual processing

    Dual function of thalamic low-vigilance state oscillations: Rhythm-regulation and plasticity

    Get PDF
    During inattentive wakefulness and non-rapid eye movement (NREM) sleep, the neocortex and thalamus cooperatively engage in rhythmic activities that are exquisitely reflected in the electroencephalogram as distinctive rhythms spanning a range of frequencies from <1 Hz slow waves to 13 Hz alpha waves. In the thalamus, these diverse activities emerge through the interaction of cell-intrinsic mechanisms and local and long-range synaptic inputs. One crucial feature, however, unifies thalamic oscillations of different frequencies: repetitive burst firing driven by voltage-dependent Ca(2+) spikes. Recent evidence reveals that thalamic Ca(2+) spikes are inextricably linked to global somatodendritic Ca(2+) transients and are essential for several forms of thalamic plasticity. Thus, we propose herein that alongside their rhythm-regulation function, thalamic oscillations of low-vigilance states have a plasticity function that, through modifications of synaptic strength and cellular excitability in local neuronal assemblies, can shape ongoing oscillations during inattention and NREM sleep and may potentially reconfigure thalamic networks for faithful information processing during attentive wakefulness

    Functional constraints in the evolution of brain circuits

    Get PDF
    Regardless of major anatomical and neurodevelopmental differences, the vertebrate isocortex shows a remarkably well-conserved organization. In the isocortex, reciprocal connections between excitatory and inhibitory neurons are distributed across multiple layers, encompassing modular, dynamical and recurrent functional networks during information processing. These dynamical brain networks are often organized in neuronal assemblies interacting through rhythmic phase relationships. Accordingly, these oscillatory interactions are observed across multiple brain scale levels, and they are associated with several sensory, motor, and cognitive processes. Most notably, oscillatory interactions are also found in the complete spectrum of vertebrates. Yet, it is unknown why this functional organization is so well conserved in evolution. In this perspective, we propose some ideas about how functional requirements of the isocortex can account for the evolutionary stability observed in microcircuits across vertebrates. We argue that isocortex architectures represent canonical microcircuits resulting from: (i) the early selection of neuronal architectures based on the oscillatory excitatory-inhibitory balance, which lead to the implementation of compartmentalized oscillations and (ii) the subsequent emergence of inferential coding strategies (predictive coding), which are able to expand computational capacities. We also argue that these functional constraints may be the result of several advantages that oscillatory activity contributes to brain network processes, such as information transmission and code reliability. In this manner, similarities in mesoscale brain circuitry and input-output organization between different vertebrate groups may reflect evolutionary constraints imposed by these functional requirements, which may or may not be traceable to a common ancestor

    A model for cerebral cortical neuron group electric activity and its implications for cerebral function

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 245-265).The electroencephalogram, or EEG, is a recording of the field potential generated by the electric activity of neuronal populations of the brain. Its utility has long been recognized as a monitor which reflects the vigilance states of the brain, such as arousal, drowsiness, and sleep stages. Moreover, it is used to detect pathological conditions such as seizures, to calibrate drug action during anesthesia, and to understand cognitive task signatures in healthy and abnormal subjects. Being an aggregate measure of neural activity, understanding the neural origins of EEG oscillations has been limited. With the advent of recording techniques, however, and as an influx of experimental evidence on cellular and network properties of the neocortex has become available, a closer look into the neuronal mechanisms for EEG generation is warranted. Accordingly, we introduce an effective neuronal skeleton circuit at a neuronal group level which could reproduce basic EEG-observable slow ( 3mm). The effective circuit makes use of the dynamic properties of the layer 5 network to explain intra-cortically generated augmenting responses, restful alpha, slow wave (< 1Hz) oscillations, and disinhibition-induced seizures. Based on recent cellular evidence, we propose a hierarchical binding mechanism in tufted layer 5 cells which acts as a controlled gate between local cortical activity and inputs arriving from distant cortical areas. This gate is manifested by the switch in output firing patterns in tufted(cont.) layer 5 cells between burst firing and regular spiking, with specific implications on local functional connectivity. This hypothesized mechanism provides an explanation of different alpha band (10Hz) oscillations observed recently under cognitive states. In particular, evoked alpha rhythms, which occur transiently after an input stimulus, could account for initial reogranization of local neural activity based on (mis)match between driving inputs and modulatory feedback of higher order cortical structures, or internal expectations. Emitted alpha rhythms, on the other hand, is an example of extreme attention where dominance of higher order control inputs could drive reorganization of local cortical activity. Finally, the model makes predictions on the role of burst firing patterns in tufted layer 5 cells in redefining local cortical dynamics, based on internal representations, as a prelude to high frequency oscillations observed in various sensory systems during cognition.by Fadi Nabih Karameh.Ph.D
    corecore