7,845 research outputs found

    Corrupted Sensing with Sub-Gaussian Measurements

    Full text link
    This paper studies the problem of accurately recovering a structured signal from a small number of corrupted sub-Gaussian measurements. We consider three different procedures to reconstruct signal and corruption when different kinds of prior knowledge are available. In each case, we provide conditions for stable signal recovery from structured corruption with added unstructured noise. The key ingredient in our analysis is an extended matrix deviation inequality for isotropic sub-Gaussian matrices.Comment: To appear in Proceedings of IEEE International Symposium on Information Theory 201

    Robust one-bit compressed sensing with partial circulant matrices

    Get PDF
    We present optimal sample complexity estimates for one-bit compressed sensing problems in a realistic scenario: the procedure uses a structured matrix (a randomly sub-sampled circulant matrix) and is robust to analog pre-quantization noise as well as to adversarial bit corruptions in the quantization process. Our results imply that quantization is not a statistically expensive procedure in the presence of nontrivial analog noise: recovery requires the same sample size one would have needed had the measurement matrix been Gaussian and the noisy analog measurements been given as data
    • …
    corecore