85 research outputs found

    Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing

    Full text link
    In hyperspectral images, some spectral bands suffer from low signal-to-noise ratio due to noisy acquisition and atmospheric effects, thus requiring robust techniques for the unmixing problem. This paper presents a robust supervised spectral unmixing approach for hyperspectral images. The robustness is achieved by writing the unmixing problem as the maximization of the correntropy criterion subject to the most commonly used constraints. Two unmixing problems are derived: the first problem considers the fully-constrained unmixing, with both the non-negativity and sum-to-one constraints, while the second one deals with the non-negativity and the sparsity-promoting of the abundances. The corresponding optimization problems are solved efficiently using an alternating direction method of multipliers (ADMM) approach. Experiments on synthetic and real hyperspectral images validate the performance of the proposed algorithms for different scenarios, demonstrating that the correntropy-based unmixing is robust to outlier bands.Comment: 23 page

    Graph Regularized Non-negative Matrix Factorization By Maximizing Correntropy

    Full text link
    Non-negative matrix factorization (NMF) has proved effective in many clustering and classification tasks. The classic ways to measure the errors between the original and the reconstructed matrix are l2l_2 distance or Kullback-Leibler (KL) divergence. However, nonlinear cases are not properly handled when we use these error measures. As a consequence, alternative measures based on nonlinear kernels, such as correntropy, are proposed. However, the current correntropy-based NMF only targets on the low-level features without considering the intrinsic geometrical distribution of data. In this paper, we propose a new NMF algorithm that preserves local invariance by adding graph regularization into the process of max-correntropy-based matrix factorization. Meanwhile, each feature can learn corresponding kernel from the data. The experiment results of Caltech101 and Caltech256 show the benefits of such combination against other NMF algorithms for the unsupervised image clustering

    Image tag completion by local learning

    Full text link
    The problem of tag completion is to learn the missing tags of an image. In this paper, we propose to learn a tag scoring vector for each image by local linear learning. A local linear function is used in the neighborhood of each image to predict the tag scoring vectors of its neighboring images. We construct a unified objective function for the learning of both tag scoring vectors and local linear function parame- ters. In the objective, we impose the learned tag scoring vectors to be consistent with the known associations to the tags of each image, and also minimize the prediction error of each local linear function, while reducing the complexity of each local function. The objective function is optimized by an alternate optimization strategy and gradient descent methods in an iterative algorithm. We compare the proposed algorithm against different state-of-the-art tag completion methods, and the results show its advantages

    Sparse feature learning for image analysis in segmentation, classification, and disease diagnosis.

    Get PDF
    The success of machine learning algorithms generally depends on intermediate data representation, called features that disentangle the hidden factors of variation in data. Moreover, machine learning models are required to be generalized, in order to reduce the specificity or bias toward the training dataset. Unsupervised feature learning is useful in taking advantage of large amount of unlabeled data, which is available to capture these variations. However, learned features are required to capture variational patterns in data space. In this dissertation, unsupervised feature learning with sparsity is investigated for sparse and local feature extraction with application to lung segmentation, interpretable deep models, and Alzheimer\u27s disease classification. Nonnegative Matrix Factorization, Autoencoder and 3D Convolutional Autoencoder are used as architectures or models for unsupervised feature learning. They are investigated along with nonnegativity, sparsity and part-based representation constraints for generalized and transferable feature extraction

    Supervised cross-modal factor analysis for multiple modal data classification

    Full text link
    In this paper we study the problem of learning from multiple modal data for purpose of document classification. In this problem, each document is composed two different modals of data, i.e., an image and a text. Cross-modal factor analysis (CFA) has been proposed to project the two different modals of data to a shared data space, so that the classification of a image or a text can be performed directly in this space. A disadvantage of CFA is that it has ignored the supervision information. In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor in the shared space to use the class label information. The factor analysis parameter and the predictor parameter are learned jointly by solving one single objective function. With this objective function, we minimize the distance between the projections of image and text of the same document, and the classification error of the projection measured by hinge loss function. The objective function is optimized by an alternate optimization strategy in an iterative algorithm. Experiments in two different multiple modal document data sets show the advantage of the proposed algorithm over other CFA methods
    corecore