206 research outputs found

    Multipitch Analysis and Tracking for Automatic Music Transcription

    Get PDF
    Music has always played a large role in human life. The technology behind the art has progressed and grown over time in many areas, for instance the instruments themselves, the recording equipment used in studios, and the reproduction through digital signal processing. One facet of music that has seen very little attention over time is the ability to transcribe audio files into musical notation. In this thesis, a method of multipitch analysis is used to track multiple simultaneous notes through time in an audio music file. The analysis method is based on autocorrelation and a specialized peak pruning method to identify only the fundamental frequencies present at any single moment in the sequence. A sliding Hamming window is used to step through the input sound file and track through time. Results show the tracking of nontrivial musical patterns over two octaves in range and varying tempos

    Application of signal processing techniques for measurement of muscle fiber conduction velocity

    Get PDF
    The objectives of this study were to evaluate if muscle fiber conduction velocity (MFCV) could be used as a reliable indicator of fatigue and to characterize the recovery of MFCV after a fatiguing contraction. The decline of MFCV with fatigue was modelled using linear regression and compared with the decline in median frequency (MF). It was found that the percent decline in MF with fatigue was greater than that of MFCV with fatigue and that the decline of MFCV was consistent in all subjects tested. It was thus determined that MFCV could be used as a reliable indicator of fatigue. Possible explanations for the recovery of MFCV after fatigue were given. The recovery curves for all subjects were curve fit using the exponential peeling technique. A comparison of the time constants showed that 8 out of 9 subjects had values between 2-4 minutes, indicating that the recovery process had a similar response in these 8 subjects. Decomposition of the EMG is a useful tool which helps us better understand the functioning of the neuromuscular system. An algorithm was developed to decompose the EMG into its constituent motor units based on the work done by Deluca et al. Preliminary results were obtained. However, further research is needed in this area

    Earthquake Nucleation Processes Across Different Scales and Settings

    Get PDF
    Extended nucleation phases of earthquakes have been regularly observed, yet the underlying mechanisms governing the initiation phase of rupture are yet to be understood in detail. Currently two end member models exist to explain earthquake nucleation: one model claiming that the nucleation phase of a small earthquake is indistinguishable from that of a large one, while the other proposes fundamental differences in the underlying process. Previous studies have been using the same seismological observations to argue for either model, leaving the need of further investigations into the nucleation behavior of earthquakes across scales and different settings. The thesis at hand contributes to the current discussion on earthquake nucleation by providing additional observational evidence for extended nucleation phases, complex rupture interaction and growth across a number of different scales and settings. Here, earthquake nucleation is investigated for three different scenarios, each with varying degrees of complexity: 1) the controlled case of induced seismicity in hydraulic stimulations of geothermal reservoirs, where rupture growth is assumed to be primarily governed by anthropogenic activity, 2) the partly-controlled setting of a geothermal field with a long history of fluid injection and production, and 3) the uncontrolled case of natural seismicity in the central Sea of Marmara, where earthquake nucleation is purely governed by the regional tectonics. First, the temporal evolution of seismicity and the growth of observed moment magnitudes for a range of past and present hydraulic stimulation projects associated with the creation of enhanced geothermal systems are analyzed. They reveal a clear linear relation between injected fluid volume/hydraulic energy and cumulative seismic moments. For most projects studied, the observations are in good agreement with existing physical models that predict a relation between injected fluid volume and maximum seismic moment of induced events. This suggests that seismicity results from a stable, pressure controlled rupture process at least for an extended injection period. Overall evolution of seismicity is independent of tectonic stress regime and is most likely governed by reservoir specific parameters, such as the preexisting structural inventory. In contrast, a few stimulations reveal unbound increase in seismic moment suggesting that for these cases evolution of seismicity is mainly controlled by stress field, the size of tectonic faults and fault connectivity. The uncertainty over whether or not a transition between behavior is likely to occur at any point during the injection is what motivates the need for a next generation monitoring and traffic-light system accounting for the possibility of unstable rupture propagation from the very beginning of injection by observing the entire seismicity evolution at high resolution for an immediate reaction in injection strategy. Furthermore, the majority of pressure-controlled stimulations shows the potential of actively controlling the size of induced earthquakes, if an injection protocol is chosen based on continuous feedback from a near-real-time seismic monitoring system. Second, moderate sized earthquakes at The Geysers geothermal field (California), where years of injection and production across hundreds of wells have led to a unique physical environment, are studied. While overall seismicity at The Geysers is generally governed by anthropogenic activities, contributions of individual wells or injection activities are hard to distinguish, thus making detailed managing of occurring magnitudes challenging. New high-resolution seismicity catalogs framing the occurrence of 20 ML > 2.5 earthquakes were created. The seismicity catalogs were developed using a matched filter algorithm, including automatic determination of P and S phase onsets and their inversion for absolute hypocenter locations with corresponding uncertainties. The selected 20 sequences sample different hypocentral depths and hydraulic conditions within the field. Seismic activity and magnitude frequency distributions displayed by the different earthquake sequences are correlated with their location within the reservoir. Sequences located in the northwestern part of the reservoir show overall increased seismic activity and low b values, while the southeastern part is dominated by decreased seismic activity and higher b values. Periods of high injection coincide with high b values and vice versa. These observations potentially reflect varying differential and mean stresses and damage of the reservoir rocks across the field. Additionally, a systematic search for seismicity localization using a multi-step cross-correlation analysis was performed. No evidence for increased correlation between the occurring seismicity and the mainshock for any of the 20 sequences could be seen, indicating that each main nucleation spot was seismically silent prior to the main rupture. However, a number of highly inter-correlated earthquakes for sequences below the reservoir and during high injection activity is observed. Under these conditions, the seismicity surrounding the future mainshock source region is more concentrated and might be evidence for a cascading nucleation process. About 50% of analyzed sequences exhibit no change in seismicity rate in response to the large main event. However, we find complex waveforms at the onset of the main earthquake, suggesting that small ruptures spontaneously grow into or trigger larger events, consistent with a cascading type nucleation. Third, the spatiotemporal evolution of seismicity during a sequence of moderate (MW4.7 and MW5.8) earthquakes occurring in September 2019 at the transition between a creeping and a locked segment of the North Anatolian Fault in the central Sea of Marmara (Turkey) was analyzed. A matched filter technique was applied to continuous waveforms from the regional network, substantially reducing the magnitude threshold for detection. Sequences of foreshocks preceding the two mainshocks are clearly seen, exhibiting different behaviors: a migration of the seismicity along the entire fault segment on the long-term and a concentration around the epicenters of the large events on the short-term. Suggesting that both seismic and aseismic slip during the foreshock sequences change the stress state on the fault, bringing it closer to failure. Furthermore, the observations also suggest that the MW4.7 event contributed to weaken the fault as part of the preparation process of the MW5.8 earthquake. Combining the results obtained from different settings, it becomes apparent that, regardless of the tectonic setting and degree of anthropogenic control over the seismicity, there is a wide range of complex nucleation behaviours not yet explained by any of the current models of earthquake nucleation. A simplistic view of earthquake nucleation as either a deterministic or a stochastic process seems inconsistent with the obtained results and fails to account for a more complex nucleation behaviour. Observations from The Geysers and the western Sea of Marmara earthquake sequence, suggest that both cascade triggering and aseismic slip can play major roles in the nucleation of moderate sized earthquakes. Both mechanisms seem to jointly contribute to fault initiation, even within the same rock volume. A separation of the two mechanisms can potentially be thought of at The Geysers, where cascade triggering seems to dominate in highly damaged parts of the reservoir, suggesting that the anthropogenic activity can at least partially influence the nucleation behavior of the occurring seismicity. This would be in agreement with the results obtained from analysis of hydraulic stimulations, where during the pressure-controlled phase of injection rupture growth is controlled by the injected fluid

    Signal Processing Methods for Heart Rate Detection Using the Seismocardiogram

    Get PDF
    Cardiac diseases are one of the major causes of death. Heart monitoring/diagnostic techniques have been developed over decades to address this concern. Monitoring a vital sign such as heart rate is a powerful technique for heart abnormalities detection (e.g., arrhythmia). The novelty of this work is that offers new heart rate detection methods which are both robust and adaptive compared to existing heart rate detec- tion methods. Utilized data sets in this research have been provided from two sources of PhysioNet and a research group. In this work, utilized methods for heart rate detection include Signal Energy Thresholding (SET), Empirical Mode Decomposition (EMD) and Empirical Wavelet Transform (EWT). To the best of the author’s knowledge, this work is the first to use EMD and EWT for heart rate detection from Seismocardiogram (SCG) signal. Obtained result from applying SET to ECG signal is selected as our ground truth. Then, all three methods are used for heart rate detection from the SCG signal. The average error of SET method, EWT and EMD respectively 13.9 ms, 13.8 ms and 16 ms. Based on the obtained results, EMD and EWT are promising techniques for heart rate detection and interpretation from the SCG signal. Another contribution of this work is arrhythmia detection using EWT. EWT provides us with the instantaneous frequency changes of the corresponding modes to ECG signal. Based on the estimated power spectral density of each mode, power spectral density of arrhythmia affected ECG is higher (≥ 50dB) compared to the power spectral density of a normal ECG (≤ 20dB). This provides the potential for arrhythmia detection using EWT

    Signal Processing Methods for Heart Rate Detection Using the Seismocardiogram

    Get PDF
    Cardiac diseases are one of the major causes of death. Heart monitoring/diagnostic techniques have been developed over decades to address this concern. Monitoring a vital sign such as heart rate is a powerful technique for heart abnormalities detection (e.g., arrhythmia). The novelty of this work is that offers new heart rate detection methods which are both robust and adaptive compared to existing heart rate detec- tion methods. Utilized data sets in this research have been provided from two sources of PhysioNet and a research group. In this work, utilized methods for heart rate detection include Signal Energy Thresholding (SET), Empirical Mode Decomposition (EMD) and Empirical Wavelet Transform (EWT). To the best of the author’s knowledge, this work is the first to use EMD and EWT for heart rate detection from Seismocardiogram (SCG) signal. Obtained result from applying SET to ECG signal is selected as our ground truth. Then, all three methods are used for heart rate detection from the SCG signal. The average error of SET method, EWT and EMD respectively 13.9 ms, 13.8 ms and 16 ms. Based on the obtained results, EMD and EWT are promising techniques for heart rate detection and interpretation from the SCG signal. Another contribution of this work is arrhythmia detection using EWT. EWT provides us with the instantaneous frequency changes of the corresponding modes to ECG signal. Based on the estimated power spectral density of each mode, power spectral density of arrhythmia affected ECG is higher (≥ 50dB) compared to the power spectral density of a normal ECG (≤ 20dB). This provides the potential for arrhythmia detection using EWT

    Neurophysiology of the macaque fronto-parietal magnitude system

    Get PDF
    In primates, the magnitude system resides in a fronto-parietal network. Single neurons in the monkey prefrontal cortex (PFC) and ventral intraparietal area (VIP) exhibit higher responses to a certain number of stimulus items regardless of their appearance or even sensory modality. Neuroimaging studies in humans show corresponding activation in human fronto-parietal areas during enumeration tasks. However, these areas are also involved in many other executive functions and, thus, the responses of single neurons within the network could be shaped by many factors. Understanding how information about magnitude develops within single neurons in this network was the objective of this thesis. This thesis includes five studies addressing various aspects of the primate frontoparietal magnitude system. First, we determined the role of behavioural relevance in shaping neuronal responses to number. Using enumerable coloured stimuli that naïve macaque monkeys discriminated based on their colour rather than number, we examined the selectivity of neuronal responses towards the number of stimuli. We simultaneously recorded single neurons in VIP and PFC. We compared these neurons to those recorded after a period of training for both monkeys, while they discriminated the stimuli based on number. In all the recording sessions, we also mapped the visual receptive fields (RF) of neurons using a passive fixation task. We created RF maps for a large number of spatially-selective neurons in each area and compared the RFs of pairs of neurons recorded at the same electrode tip. We then differentiated the extent of interaction between the RF and number selectivity in both areas. Neurons in both PFC and VIP were selective for number despite the monkeys being numerically-naïve and number being the behaviourally irrelevant stimulus feature. Post training, neurons in PFC were modulated by behavioural relevance and their selectivity for number became stronger as a result. VIP neurons did not show such an effect. We found that PFC RFs were predominantly contralateral and VIP RFs, foveal. Regardless of RF location and size, we observed heterogeneous and sometimes, inverted RFs in neurons adjacent to each other, more frequently in PFC than in VIP. Lastly, neurons in both PFC and VIP were strongly number-selective even when the number stimuli were shown outside their RFs. Our results provided valuable insight into the organisation of the magnitude system in primates. The presence of number-selective neuronal responses in numerically-naïve monkeys even when the number of stimuli was behaviourally irrelevant confirmed that our magnitude system processes magnitude spontaneously as a natural category. The strict spatiotopic organisation of RFs characteristic of early visual areas is progressively lower in VIP and PFC. Together, these results point to a hierarchy in the fronto-parietal areas we studied, with PFC located at the apex of the magnitude system and VIP upstream to it

    Extraction and representation of semantic information in digital media

    Get PDF
    • …
    corecore