48 research outputs found

    Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging

    Get PDF
    Atomic force microscopes (AFM) provide topographical and mechanical information of the sample with very good axial resolution, but are limited in terms of chemical specificity and operation time-scale. An optical microscope coupled to an AFM can recognize and target an area of interest using specific identification markers like fluorescence tags. A high resolution fluorescence microscope can visualize fluorescence structures or molecules below the classical optical diffraction limit and reach nanometer scale resolution. A stimulated emission depletion (STED) microscopy superresolution (SR) microscope coupled to an AFM is an example in which the AFM tip gains nanoscale manipulation capabilities. The SR targeting and visualization ability help in fast and specific identification of subdiffraction-sized cellular structures and manoeuvring the AFM tip onto the target. We demonstrate how to build a STED AFM and use it for biological nanomanipulation aided with fast visualization. The STED AFM based bionanomanipulation is presented for the first time in this article. This study points to future nanosurgeries performable at single-cell level and a physical targeted manipulation of cellular features as it is currently used in research domains like nanomedicine and nanorobotics

    Imaging amyloid fibers at the nanoscale: Method development and applications for hybrid materials and biomedicine

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de la Materia Condensada. Fecha de lectura: 13-12-2019Esta tesis tiene embargado el acceso al texto completo hasta el 13-06-2021In the last decades, advanced imaging techniques have improved our ability to analyze biological systems at the nanoscale, enabling the observation of structural and molecular components. Different imaging tools are specialized in the characterization of a specific aspect of the sample and, when they are combined, complementary information is obtained providing a more comprehensive understanding of the system. This thesis focuses on the application of (super-resolution) fluorescence microscopy in combination with atomic force microscopy (AFM) for revealing specific chemical information in a high-resolution topography map. Particularly, correlative microscopy is applied to the characterization of amyloid fibers, which are misfolded protein aggregates with interest in nanomaterials research and biomedicine. This manuscript is organized in seven chapters. Chapter 1 introduces the imaging techniques used in the thesis. It also gives a general overview on amyloid fibers, their application as hybrid materials, their importance in biomedicine for being involved in different diseases, and the phototherapeutic approaches available to treat them. In Chapter 2, the general materials and methods used during the thesis are explained. Chapter 3 provides a detailed discussion about technical aspects of correlative super-resolution fluorescence microscopy and AFM such as sample preparation, data analysis and image alignment. Furthermore, the advantage of using AFM as a “ground truth” to evaluate different aspects of super-resolution techniques, such as labeling or image reconstruction, is highlighted. In Chapter 4, the methodology developed in Chapter 3 is applied to evaluate the functionalization of amyloid fibers with quantum dots or organic fluorophores. Thus, correlative microscopy is presented as a useful technique for characterizing luminescent hybrid materials at the nanoscale. In the context of biomedicine, amyloid aggregates are important for being involved in different diseases (e.g. Alzheimer or Parkinson). Photochemical strategies to degrade amyloid structures are becoming an interesting alternative. In this thesis, a thioflavin T (ThT) derivative (ROS-ThT), which is able to target pathogenic aggregates in the presence of functional proteins, is used to study photodamage effects on amyloid fibers. In addition to fluorescence, this photocatalyst or photosensitizer produces singlet oxygen Abstract upon blue light exposure, affecting amyloid structures through oxidation. The purpose of Chapter 5 is to select a useful amyloid model to evaluate photodamage at the nanoscale, and therefore different fibers were produced, fibrillated and characterized. In Chapter 6, the selected amyloid model is used to study photodamage induced by ROS-ThT at the single-fiber level through imaging techniques, and complemented by classical biochemical assays. These experiments highlight that the combination of fluorescence microscopy and AFM is useful to probe the heterogeneity of amyloid material and to disentangle the complex dependence between photocatalyst binding/activity and fiber morphology and/or composition. The aim of Chapter 7 is to provide coherence and perspective to the main results of the thesis, as well as an outlook on how advanced microscopy methods may impact the study of amyloids in different fields of researchQuiero agradecer tambiĂ©n al Ministerio de EconomĂ­a y Competitividad por financiar mi trabajo con la beca FPI BES-2016-076293 dentro del proyecto MAT2015-66605-P y al Ministerio de Ciencia, InnovaciĂłn y Universidades por financiar el proyecto PCI2018‐093064

    Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences

    Get PDF
    Correlating data from different microscopy techniques holds the potential to discover new facets of signaling events in cellular biology. Here we report for the first time a hardware set-up capable of achieving simultaneous co-localized imaging of spatially correlated far-field super-resolution fluorescence microscopy and atomic force microscopy, a feat only obtained until now by fluorescence microscopy set-ups with spatial resolution restricted by the Abbe diffraction limit. We detail system integration and demonstrate system performance using sub-resolution fluorescent beads and applied to a test sample consisting of human bone osteosarcoma epithelial cells, with plasma membrane transporter 1 (MCT1) tagged with an enhanced green fluorescent protein (EGFP) at the N-terminal.Ana I. Gomez Varela wishes to acknowledge support from the Xunta de Galicia, Conselleria de Cultura, Educacion e Ordenacion Universitaria e da Conselleria de Economia, Emprego e Industria (Programa de axudas de apoio a etapa de formacion posdoutoral 2017). Adelaide Miranda and Pieter De Beule acknowledge financial support from Norte's Regional Operational Programme 2014-2020-Norte2020 (NORTE-01-0145-FEDER-000019). Sandra Paiva and Rosana Alves thank Fulbright Commission Portugal and Luso-American Development Foundation (FLAD) for their financial support to perform research work at UC Berkeley, California, USA. We thank the U.S. Embassy in Portugal for supporting David Drubin's visit to Portugal. We thank Ann Fisher of the UC Berkeley Cell Culture Facility for help with cell culture. We thank Dr. Kartoosh Heydari of the Cancer Research Lab Flow Cytometry Core Facility of UC Berkeley. Rosana Alves and Claudia Barata-Antunes are recipients of PhD fellowships from the Portuguese Foundation for Science and Technology (PD/BD/113813/2015 and PD/BD/135208/2017, respectively). The authors want to thank Nikon and Izasa Scientific for their support to the experiment by providing a N SIM-E microscope set-up on loan. We also gratefully acknowledge Dr. Kees van der Oord from Nikon Instruments Europe B.V. for his assistance with the SIM microscope as well as Paulo Madureira and Carlos Pitaes from IZASA Portugal and Jordi Recasens from IZASA Spain for their assistance with the integration of the SIM and AFM microscopes. Finally, we want to thank Benjamin Holmes for fruitful discussions and relentless support

    Optical nanoscopy

    Get PDF
    AbstractThis article deals with the developments of optical microscopy towards nanoscopy. Basic concepts of the methods implemented to obtain spatial super-resolution are described, along with concepts related to the study of biological systems at the molecular level. Fluorescence as a mechanism of contrast and spatial resolution will be the starting point to developing a multi-messenger optical microscope tunable down to the nanoscale in living systems. Moreover, the integration of optical nanoscopy with scanning probe microscopy and the charming possibility of using artificial intelligence approaches will be shortly outlined

    Dissection of DNA double-strand-break repair using novel single-molecule forceps.

    Get PDF
    Repairing DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) requires multiple proteins to recognize and bind DNA ends, process them for compatibility, and ligate them together. We constructed novel DNA substrates for single-molecule nanomanipulation, allowing us to mechanically detect, probe, and rupture in real-time DSB synapsis by specific human NHEJ components. DNA-PKcs and Ku allow DNA end synapsis on the 100 ms timescale, and the addition of PAXX extends this lifetime to ~2 s. Further addition of XRCC4, XLF and ligase IV results in minute-scale synapsis and leads to robust repair of both strands of the nanomanipulated DNA. The energetic contribution of the different components to synaptic stability is typically on the scale of a few kilocalories per mole. Our results define assembly rules for NHEJ machinery and unveil the importance of weak interactions, rapidly ruptured even at sub-picoNewton forces, in regulating this multicomponent chemomechanical system for genome integrity

    Bioimage informatics in STED super-resolution microscopy

    Get PDF
    Optical microscopy is living its renaissance. The diffraction limit, although still physically true, plays a minor role in the achievable resolution in far-field fluorescence microscopy. Super-resolution techniques enable fluorescence microscopy at nearly molecular resolution. Modern (super-resolution) microscopy methods rely strongly on software. Software tools are needed all the way from data acquisition, data storage, image reconstruction, restoration and alignment, to quantitative image analysis and image visualization. These tools play a key role in all aspects of microscopy today – and their importance in the coming years is certainly going to increase, when microscopy little-by-little transitions from single cells into more complex and even living model systems. In this thesis, a series of bioimage informatics software tools are introduced for STED super-resolution microscopy. Tomographic reconstruction software, coupled with a novel image acquisition method STED< is shown to enable axial (3D) super-resolution imaging in a standard 2D-STED microscope. Software tools are introduced for STED super-resolution correlative imaging with transmission electron microscopes or atomic force microscopes. A novel method for automatically ranking image quality within microscope image datasets is introduced, and it is utilized to for example select the best images in a STED microscope image dataset.Siirretty Doriast

    Guidelines for DNA recombination and repair studies: Mechanistic assays of DNA repair processes

    Get PDF
    Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies

    AFM-STED correlative nanoscopy provides a new view on the formation process of misfolded protein aggregates

    Get PDF
    The main part of my PhD work focused on the application of an advanced integrated technique, based on the coupling of an atomic force microscope (AFM) and a stimulated emission depletion (STED) microscope in the study of amyloid fibrils formation. This coupled system allows the acquisition of super-resolution fluorescence images, perfectly overlapped with AFM topography. Exploiting the extended capability offered by this technique, I highlighted some important features on the mechanisms followed by the labeled and unlabeled proteins through their aggregation pathway. The results demonstrates that labeled molecules are involved only in selected pathways of aggregation, among the multiple that are present in the aggregation reaction. In a second part of my work, I investigated the process of interaction between Alpha-synuclein (\u3b1-Syn), the pathological peptide associated to the Parkinson\u2019s disease, and model lipid membranes. The aim of this study was to identify molecular mechanisms that are indicated as the base of neurodegeneration, not only in Parkinson\u2019s disease, but also in a large class of disorders, indicated as protein misfolding diseases

    Data-driven microscopy: placing high-fidelity data in a population-wide context

    Get PDF
    Mikroskopi Àr idag ett fundamentalt verktyg inom forskning, dÀr det tillÄter oss att skÄda in och utforska vÄra prover i hög detalj. Mycket utav utvecklingen av nya mikroskopimetoder har strÀvat efter att öka den detaljnivÄ vi kan uppnÄ. Samtidigt har utvecklingen inom hÄrdvara, med tillgÄng till bÀttre och mer kraftfulla instrument, lett till utveckligen av metoder dÀr fokuset Àr att studera en hel population av celler. Till skillnad frÄn nÀr vi studerar ett fÄtal celler i hög detalj, tillÄter det oss att sÀtta perspektiv pÄ det vi ser. Det ger oss en förmÄga att sÀga vad det normala beteendet som man kan förvÀnta sig Àr, och vilka celler som sticker ut i en population. Med andra ord, vad som Àr intressant.Samtidigt finns det ett stort intresse av att veta hur varje individuell cell beter sig. Varje cell Àr, precis som oss mÀnniskor, unik. De har olika historia, olika Älder och befinner sig i olika tillstÄnd. Precis som vÄra celler i kroppen Àr unika, Àr Àven de cellerna som kan orsaka sjukdom unika. För att förstÄ varför vissa personer Àr mer kÀnsliga mot sjukdom, och hur en infektion svarar pÄ vÄra behandlingar behövs en förstÄelse och an förmÄga att studera celler pÄ individuell nivÄ, samtidigt som vi bibehÄller ett perspektiv utifrÄn populations-nivÄ.Denna brist pÄ perspektiv har lÀnge varit ett problem inom mikroskopi. Den vanliga lösningen pÄ detta problem Àr att vi, som mÀnniskor, kan tolka en bild och peka pÄ vad det Àr som Àr intressant eller inte. Vi Àr, trots allt, extremt duktiga pÄ att tolka visuell information. Men detta Àr inte en helt felfri lösning. Som mÀnniskor kan vi vara relativt okonsekventa, vi tolkar oftast utifrÄn hur vi vill att datan ser ut. Med andra ord, vi saknar förmÄgan att vara objektiva i vÄr metodik för att samla in bilder i hög detalj.Min avhandling har till stor del handlat om att utveckla ett verktyg som tillÄter oss att sÀtta perspektiv pÄ det vi studerar med mikroskopi. Detta har lett till Arbete 1, dÀr vi presenterar en allmÀn strategi (data-styrd mikroskopi) för hur vi kan arbeta med mikroskopi för att samla in data pÄ en hel population, samtidigt som vi kan samla in data med hög detalj pÄ relevanta fynd i populationen. Vi presenterar Àven hÀr en teknisk lösning, och utför metoden i tre olika scenarion: ett för att studera en population av celler mer allmÀnt, ett för att fÄnga det ögonblick som bakterier infekterar mÀnskliga celler, och ett dÀr vi studerar och fÄngar in data pÄ relevanta (frÄn ett populations-kontext) cancerceller och följer dem över tid. Denna metod tillÄter oss att samla in data i hög detalj pÄ ett objektivt sÀtt, och att sÀtta perspektiv pÄ det vi studerar.I Arbete 2 har vi vidare utvecklat pÄ vÄr metod, dÀr vi försöker lösa problemet att hitta en och samma cell i flera olika mikroskop. Eftersom vi, genom mikroskopi, jobbar pÄ en sÄ ofantligt liten skala, Àr det oftast vÀldigt svÄrt att orientera sig och hitta rÀtt inom ett prov. Det Àr lite som att spela PÄ spÄret och gissa vart man Àr, fast utan alla ledtrÄdar man fÄr pÄ varje nivÄ. Eftersom vi har tillgÄng till data pÄ en hel population, sÄ utgick vi frÄn att det borde finnas samband mellan celler och deras grannar i ett prov som Àr unika för just dem. Genom att anvÀnda sig av dessa unika samband kom vi fram med en lösning dÀr vi snabbt kan kalibrera ett prov pÄ ett nytt mikroskop. Det öppnar dörrarna för oss forskare att ÄteranvÀnda prov, att lÀttare justera provet med nya markörer (för det vi vill visualisera inom cellerna), och att kunna tolka ett prov med data insamlat frÄn flera system.COVID-19 pandemin var en stor omstÀllning för samhÀllet och vÄrden. LikvÀl var det en stor omstÀllning för mÄnga forskningslabb, dÀr en kapplöpning startade för att sÄ snabbt som möjligt förstÄ sig pÄ hur viruset fungerar och hur vÄrt immunförsvar svarar pÄ dess infektion. Det var i detta kontext som mitt tredje arbete utfördes. Genom den erfarenhet jag samlat pÄ mig inom mikroskopi och att analysera bilder pÄ stora dataset, bidrog jag med hjÀlp för att studera hur framtagna antikroppar kan förhindra bindningen av virus-lika partiklar till celler. Antikroppar Àr ett protein som immunförsvaret producerar i respons mot en patogen. En bÀttre förstÄelse kring hur antikroppar verkar, och vad skillnaden mellan en bra och en dÄlig antikropp Àr kan leda till framtagningen av bÀttre vaccin-program och behandlingar inom sjukvÄrden.I Arbete 4 medverkade jag i ett arbete dÀr bakterien Streptococcus pyogenes var i fokus. S. pyogenes enda vÀrd Àr mÀnniskor, och ansvarar för över 600 miljoner infektionsfall per Är globalt. PÄ bakteriens yta dominerar ett protein, M-proteinet, ett multi-funktionellt protein som bakterien (bland annat) anvÀnder sig för att binda till ytor och förhindra immunförsvarets förmÄga att göra sig av med bakterien. I arbetet upptÀckte vi att fibronektin binder till bakterien (specifikt M-proteinet) olika mycket beroende pÄ mÀngden antikroppar som finns i miljön. Fibronektin Àr ett protein som vi mÀnniskor producerar, och bidrar (bland annat) till att skapa den miljön som celler befinner sig i. MÀngden fibronektin varierar beroende pÄ var i kroppen man kollar. Till exempel, i saliv har du en relativt lÄg mÀngd fibronektin jÀmfört med i blodet. Detta ledde till hypotesen att bakterien Àr special-anpassad för olika miljöer i dess förmÄga att undkomma immunförsvaret. En bÀttre förstÄelse kring hur bakterien Àr anpassad till vÄra olika miljöer och dess infektionsförlopp kan leda till bÀttre och mer anpassade behandlingar inom sjukvÄrden

    Studies of Single-Molecule Dynamics in Microorganisms

    Get PDF
    Fluorescence microscopy is one of the most extensively used techniques in the life sciences. Considering the non-invasive sample preparation, enabling live-cell compliant imaging, and the speciïŹc ïŹ‚uorescence labeling, allowing for a speciïŹc visualization of virtually any cellular compound, it is possible to localize even a single molecule in living cells. This makes modern ïŹ‚uorescence microscopy a powerful toolbox. In the recent decades, the development of new, "super-resolution" ïŹ‚uorescence microscopy techniques, which surpass the diïŹ€raction limit, revolutionized the ïŹeld. Single-Molecule Localization Microscopy (SMLM) is a class of super-resolution microscopy methods and it enables resolution of down to tens of nanometers. SMLM methods like Photoactivated Localization Microscopy (PALM), (direct) Stochastic Optical Reconstruction Microscopy ((d)STORM), Ground-State Depletion followed by Individual Molecule Return (GSDIM) and Point Accumulation for Imaging in Nanoscale Topography (PAINT) have allowed to investigate both, the intracellular spatial organization of proteins and to observe their real-time dynamics at the single-molecule level in live cells. The focus of this thesis was the development of novel tools and strategies for live-cell SingleParticle Tracking PALM (sptPALM) imaging and implementing them for biological research. In the ïŹrst part of this thesis, I describe the development of new Photoconvertible Fluorescent Proteins (pcFPs) which are optimized for sptPALM lowering the phototoxic damage caused by the imaging procedure. Furthermore, we show that we can utilize them together with Photoactivatable Fluorescent Proteins (paFPs) to enable multi-target labeling and read-out in a single color channel, which signiïŹcantly simpliïŹes the sample preparation and imaging routines as well as data analysis of multi-color PALM imaging of live cells. In parallel to developing new ïŹ‚uorescent proteins, I developed a high throughput data analysis pipeline. I have implemented this pipeline in my second project, described in the second part of this thesis, where I have investigated the protein organization and dynamics of the CRISPR-Cas antiviral defense mechanism of bacteria in vivo at a high spatiotemporal level with the sptPALM approach. I was successful to show the diïŹ€erences in the target search dynamics of the CRISPR eïŹ€ector complexes as well as of single Cas proteins for diïŹ€erent target complementarities. I have also ïŹrst data describing longer-lasting bound-times between eïŹ€ector complex and their potential targets in vivo, for which only in vitro data has been available till today. In summary, this thesis is a signiïŹcant contribution for both, the advances of current sptPALM imaging methods, as well as for the understanding of the native behavior of CRISPR-Cas systems in vivo
    corecore