62,833 research outputs found

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Accretion, ejection and reprocessing in supermassive black holes

    Full text link
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of active galactic nuclei. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timin

    CleAir monitoring system for particulate matter. A case in the Napoleonic Museum in Rome

    Get PDF
    Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case

    TIR-based dynamic liquid-level and flow-rate sensing and its application on centrifugal microfluidic platforms

    Get PDF
    For the first time we present a technique for the spatio-temporally resolved localization of liquid-gas interfaces on centrifugal microfluidic platforms based on total internal reflection (TIR) at the channel wall. The simple setup consists of a line laser and a linear image sensor array mounted in a stationary instrument. Apart from identifying the presence of (usually unwanted) gas bubbles, the here described online meniscus detection allows to measure liquid volumes with a high precision of 1.9%. Additionally, flow rates and viscosities (range: 1-10.7 mPa s) can be sensed even during rotation at frequencies up to 30 Hz with a precision of 4.7% and 4.3%, respectively

    Pulsed Frequency Shifted Feedback Laser for Accurate Long Distance Measurements: Beat Order Determination

    Full text link
    Long-distance measurements (10 m - 1000 m) with an accuracy of 10-7 is a challenge for many applications. We show that it is achievable with Frequency Shifted Feedback (FSF) laser interferometry technique, provided that the determination of the radio frequency beat order be made without ambiguity and on a time scale compatible with atmospheric applications. Using the pulsed-FSF laser that we developed for laser guide star application, we propose and test, up to 240 m, a simple method for measuring the beat order in real time. The moving-comb and Yatsenko models are also discussed. The first of these models fails to interpret our long-distance interferometry results. We show that the accuracy of long-distance measurements depends primarily on the stabilization of the acoustic frequency of the modulator

    General Defocusing Particle Tracking: fundamentals and uncertainty assessment

    Full text link
    General Defocusing Particle Tracking (GDPT) is a single-camera, three-dimensional particle tracking method that determines the particle depth positions from the defocusing patterns of the corresponding particle images. GDPT relies on a reference set of experimental particle images which is used to predict the depth position of measured particle images of similar shape. While several implementations of the method are possible, its accuracy is ultimately limited by some intrinsic properties of the acquired data, such as the signal-to-noise ratio, the particle concentration, as well as the characteristics of the defocusing patterns. GDPT has been applied in different fields by different research groups, however, a deeper description and analysis of the method fundamentals has hitherto not been available. In this work, we first identity the fundamental elements that characterize a GDPT measurement. Afterwards, we present a standardized framework based on synthetic images to assess the performance of GDPT implementations in terms of measurement uncertainty and relative number of measured particles. Finally, we provide guidelines to assess the uncertainty of experimental GDPT measurements, where true values are not accessible and additional image aberrations can lead to bias errors. The data were processed using DefocusTracker, an open-source GDPT software. The datasets were created using the synthetic image generator MicroSIG and have been shared in a freely-accessible repository

    On-line measurement of heat of combustion

    Get PDF
    An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals

    Index to NASA Tech Briefs, January - June 1967

    Get PDF
    Technological innovations for January-June 1967, abstracts and subject inde

    The effect of flow oscillations on cavity drag

    Get PDF
    An experimental investigation of flow over an axisymmetric cavity shows that self-sustained, periodic oscillations of the cavity shear layer are associated with low cavity drag. In this low-drag mode the flow regulates itself to fix the mean-shear-layer stagnation point at the downstream corner. Above a critical value of the cavity width-to-depth ratio there is an abrupt and large increase of drag due to the onset of the ‘wake mode’ of instability. It is also shown by measurement of the momentum balance how the drag of the cavity is related to the state of the shear layer, as defined by the mean momentum transport ρuv\rho\overline{u}\overline{v} and the Reynolds stress ρuv\rho\overline{u^{\prime}v^{\prime}}, and how these are related to the amplifying oscillations in the shear layer. The cavity shear layer is found to be different, in several respects, from a free shear layer
    corecore