38,902 research outputs found

    Motion estimation using optical flow field

    Get PDF
    Over the last decade, many low-level vision algorithms have been devised for extracting depth from intensity images. Most of them are based on motion of the rigid observer. Translation and rotation are constants with respect to space coordinates. When multi-objects move and/or the objects change shape, the algorithms cannot be used. In this dissertation, we develop a new robust framework for the determination of dense 3-D position and motion fields from a stereo image sequence. The framework is based on unified optical flow field (UOFF). In the UOFF approach, a four frame mode is used to compute six dense 3-D position and velocity fields. Their accuracy depends on the accuracy of optical flow field computation. The approach can estimate rigid and/or nonrigid motion as well as observer and/or object(s) motion. Here, a novel approach to optical flow field computation is developed. The approach is named as correlation-feedback approach. It has three different features from any other existing approaches. They are feedback, rubber window, and special refinement. With those three features, error is reduced, boundary is conserved, subpixel estimation accuracy is increased, and the system is robust. Convergence of the algorithm is proved in general. Since the UOFF is based on each pixel, it is sensitive to noise or uncertainty at each pixel. In order to improve its performance, we applied two Kalman filters. Our analysis indicates that different image areas need different convergence rates, for instance. the areas along boundaries have faster convergence rate than an interior area. The first Kalman filter is developed to conserve moving boundary in optical How determination by applying needed nonhomogeneous iterations. The second Kalman filter is devised to compute 3-D motion and structure based on a stereo image sequence. Since multi-object motion is allowed, newly visible areas may be exposed in images. How to detect and handle the newly visible areas is addressed. The system and measurement noise covariance matrices, Q and R, in the two Kalman filters are analyzed in detail. Numerous experiments demonstrate the efficiency of our approach

    Integrated 2-D Optical Flow Sensor

    Get PDF
    I present a new focal-plane analog VLSI sensor that estimates optical flow in two visual dimensions. The chip significantly improves previous approaches both with respect to the applied model of optical flow estimation as well as the actual hardware implementation. Its distributed computational architecture consists of an array of locally connected motion units that collectively solve for the unique optimal optical flow estimate. The novel gradient-based motion model assumes visual motion to be translational, smooth and biased. The model guarantees that the estimation problem is computationally well-posed regardless of the visual input. Model parameters can be globally adjusted, leading to a rich output behavior. Varying the smoothness strength, for example, can provide a continuous spectrum of motion estimates, ranging from normal to global optical flow. Unlike approaches that rely on the explicit matching of brightness edges in space or time, the applied gradient-based model assures spatiotemporal continuity on visual information. The non-linear coupling of the individual motion units improves the resulting optical flow estimate because it reduces spatial smoothing across large velocity differences. Extended measurements of a 30x30 array prototype sensor under real-world conditions demonstrate the validity of the model and the robustness and functionality of the implementation

    Video Object Detection with an Aligned Spatial-Temporal Memory

    Full text link
    We introduce Spatial-Temporal Memory Networks for video object detection. At its core, a novel Spatial-Temporal Memory module (STMM) serves as the recurrent computation unit to model long-term temporal appearance and motion dynamics. The STMM's design enables full integration of pretrained backbone CNN weights, which we find to be critical for accurate detection. Furthermore, in order to tackle object motion in videos, we propose a novel MatchTrans module to align the spatial-temporal memory from frame to frame. Our method produces state-of-the-art results on the benchmark ImageNet VID dataset, and our ablative studies clearly demonstrate the contribution of our different design choices. We release our code and models at http://fanyix.cs.ucdavis.edu/project/stmn/project.html

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs
    • …
    corecore