7,055 research outputs found

    Unbiased Cosmological Parameter Estimation from Emission Line Surveys with Interlopers

    Full text link
    The galaxy catalogs generated from low-resolution emission line surveys often contain both foreground and background interlopers due to line misidentification, which can bias the cosmological parameter estimation. In this paper, we present a method for correcting the interloper bias by using the joint-analysis of auto- and cross-power spectra of the main and the interloper samples. In particular, we can measure the interloper fractions from the cross-correlation between the interlopers and survey galaxies, because the true cross-correlation must be negligibly small. The estimated interloper fractions, in turn, remove the interloper bias in the cosmological parameter estimation. For example, in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) low-redshift (z<0.5z<0.5) [O II] λ3727\lambda3727{\AA} emitters contaminate high-redshift (1.9<z<3.51.9<z<3.5) Lyman-α\alpha line emitters. We demonstrate that the joint-analysis method yields a high signal-to-noise ratio measurement of the interloper fractions while only marginally increasing the uncertainties in the cosmological parameters relative to the case without interlopers. We also show the same is true for the high-latitude spectroscopic survey of Wide-Field Infrared Survey Telescope (WFIRST) mission where contamination occurs between the Balmer-α\alpha line emitters at lower redshifts (1.1<z<1.91.1<z<1.9) and Oxygen ([O III] λ5007\lambda5007{\AA}) line emitters at higher redshifts (1.7<z<2.81.7<z<2.8).Comment: 36 pages, 26 figure

    Measuring our universe from galaxy redshift surveys

    Get PDF
    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local universe looks like. While the galaxy distribution traces the bright side of the universe, detailed quantitative analyses of the data have even revealed the dark side of the universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of Precision Cosmology.Comment: 82 pages, 31 figures, invited review article published in Living Reviews in Relativity, http://www.livingreviews.org/lrr-2004-

    Generating artificial light curves: Revisited and updated

    Full text link
    The production of artificial light curves with known statistical and variability properties is of great importance in astrophysics. Consolidating the confidence levels during cross-correlation studies, understanding the artefacts induced by sampling irregularities, establishing detection limits for future observatories are just some of the applications of simulated data sets. Currently, the widely used methodology of amplitude and phase randomisation is able to produce artificial light curves which have a given underlying power spectral density (PSD) but which are strictly Gaussian distributed. This restriction is a significant limitation, since the majority of the light curves e.g. active galactic nuclei, X-ray binaries, gamma-ray bursts show strong deviations from Gaussianity exhibiting `burst-like' events in their light curves yielding long-tailed probability distribution functions (PDFs). In this study we propose a simple method which is able to precisely reproduce light curves which match both the PSD and the PDF of either an observed light curve or a theoretical model. The PDF can be representative of either the parent distribution or the actual distribution of the observed data, depending on the study to be conducted for a given source. The final artificial light curves contain all of the statistical and variability properties of the observed source or theoretical model i.e. same PDF and PSD, respectively. Within the framework of Reproducible Research, the code, together with the illustrative example used in this manuscript, are both made publicly available in the form of an interactive Mathematica notebook.Comment: Accepted for publication in MNRAS. The paper is 23 pages long and contains 21 figures and 2 tables. The Mathematica notebook can be found in the web as part of this paper (Online Material) or at http://www.astro.soton.ac.uk/~de1e08/ArtificialLightCurves

    Probing cosmology and gravity with redshift-space distortions around voids

    Full text link
    Cosmic voids in the large-scale structure of the Universe affect the peculiar motions of objects in their vicinity. Although these motions are difficult to observe directly, the clustering pattern of their surrounding tracers in redshift space is influenced in a unique way. This allows to investigate the interplay between densities and velocities around voids, which is solely dictated by the laws of gravity. With the help of NN-body simulations and derived mock-galaxy catalogs we calculate the average density fluctuations around voids identified with a watershed algorithm in redshift space and compare the results with the expectation from general relativity and the Λ\LambdaCDM model. We find linear theory to work remarkably well in describing the dynamics of voids. Adopting a Bayesian inference framework, we explore the full posterior of our model parameters and forecast the achievable accuracy on measurements of the growth rate of structure and the geometric distortion through the Alcock-Paczynski effect. Systematic errors in the latter are reduced from 15%\sim15\% to 5%\sim5\% when peculiar velocities are taken into account. The relative parameter uncertainties in galaxy surveys with number densities comparable to the SDSS MAIN (CMASS) sample probing a volume of 1h3Gpc31h^{-3}{\rm Gpc}^3 yield σf/b/(f/b)2%\sigma_{f/b}\left/(f/b)\right.\sim2\% (20%20\%) and σDAH/DAH0.2%\sigma_{D_AH}/D_AH\sim0.2\% (2%2\%), respectively. At this level of precision the linear-theory model becomes systematics dominated, with parameter biases that fall beyond these values. Nevertheless, the presented method is highly model independent; its viability lies in the underlying assumption of statistical isotropy of the Universe.Comment: 38 pages, 14 figures. Published in JCAP. Referee comments incorporated, typos corrected, references added. Considerably improved results thanks to consideration of full covariance matrix in the MCMC analysi
    corecore