28,769 research outputs found

    Proton imaging of stochastic magnetic fields

    Full text link
    Recent laser-plasma experiments report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for understanding the physical processes these experiments are attempting to investigate. In this paper, we show how a proton imaging diagnostic can be used to determine a range of relevant magnetic field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. We conclude that features of the beam's final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter - the contrast parameter - which quantifies the relative size of the correlation length of the stochastic field, proton displacements due to magnetic deflections, and the image magnification. For stochastic magnetic fields, we establish the existence of four contrast regimes - linear, nonlinear injective, caustic and diffusive - under which proton-flux images relate to their parent fields in a qualitatively distinct manner. As a consequence, it is demonstrated that in the linear or nonlinear injective regimes, the path-integrated magnetic field experienced by the beam can be extracted uniquely, as can the magnetic-energy spectrum under a further statistical assumption of isotropy. This is no longer the case in the caustic or diffusive regimes. We also discuss complications to the contrast-regime characterisation arising for inhomogeneous, multi-scale stochastic fields, as well as limitations currently placed by experimental capabilities on extracting magnetic field statistics. The results presented in this paper provide a comprehensive description of proton images of stochastic magnetic fields, with applications for improved analysis of given proton-flux images.Comment: Main paper pp. 1-29; appendices pp. 30-84. 24 figures, 2 table

    Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast.

    Get PDF
    We demonstrate that Magnetic Particle Imaging (MPI) enables monitoring of cellular grafts with high contrast, sensitivity, and quantitativeness. MPI directly detects the intense magnetization of iron-oxide tracers using low-frequency magnetic fields. MPI is safe, noninvasive and offers superb sensitivity, with great promise for clinical translation and quantitative single-cell tracking. Here we report the first MPI cell tracking study, showing 200-cell detection in vitro and in vivo monitoring of human neural graft clearance over 87 days in rat brain

    Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    Full text link
    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an "acousto-electrical speckle" in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging

    Three Dimensional Annihilation Imaging of Antiprotons in a Penning Trap

    Full text link
    We demonstrate three-dimensional annihilation imaging of antiprotons trapped in a Penning trap. Exploiting unusual feature of antiparticles, we investigate a previously unexplored regime in particle transport; the proximity of the trap wall. Particle loss on the wall, the final step of radial transport, is observed to be highly non-uniform, both radially and azimuthally. These observations have considerable implications for the production and detection of antihydrogen atoms.Comment: Invited Talk at NNP03, Workshop on Non-Neutral Plasmas, 200
    • …
    corecore