217 research outputs found

    ZipWeave: Towards Efficient and Reliable Measurement based Mobile Coverage Maps

    Get PDF

    Understanding mobile network quality and infrastructure with user-side measurements

    Get PDF
    Measurement collection is a primary step towards analyzing and optimizing performance of a telecommunication service. With an Mobile Broadband (MBB) network, the measurement process has not only to track the network’s Quality of Service (QoS) features but also to asses a user’s perspective about its service performance. The later requirement leads to “user-side measurements” which assist in discovery of performance issues that makes a user of a service unsatisfied and finally switch to another network. User-side measurements also serve as first-hand survey of the problem domain. In this thesis, we exhibit the potential in the measurements collected at network edge by considering two well-known approaches namely crowdsourced and distributed testbed-based measurements. Primary focus is on exploiting crowdsourced measurements while dealing with the challenges associated with it. These challenges consist of differences in sampling densities at different parts of the region, skewed and non-uniform measurement layouts, inaccuracy in sampling locations, differences in RSS readings due to device-diversity and other non-ideal measurement sampling characteristics. In presence of heterogeneous characteristics of the user-side measurements we propose how to accurately detect mobile coverage holes, to devise sample selection process so to generate a reliable radio map with reduced sample cost, and to identify cellular infrastructure at places where the information is not public. Finally, the thesis unveils potential of a distributed measurement test-bed in retrieving performance features from domains including user’s context, service content and network features, and understanding impact from these features upon the MBB service at the application layer. By taking web-browsing as a case study, it further presents an objective web-browsing Quality of Experience (QoE) model

    Crowdsourced Reconstruction of Cellular Networks to Serve Outdoor Positioning: Modeling, Validation and Analysis

    Get PDF
    Positioning via outdoor fingerprinting, which exploits the radio signals emitted by cellular towers, is fundamental in many applications. In most cases, the localization performance is affected by the availability of information about the emitters, such as their coverage. While several projects aim at collecting cellular network data via crowdsourcing observations, none focuses on information about the structure of the networks, which is paramount to correctly model their topology. The difficulty of such a modeling is exacerbated by the inherent differences among cellular technologies, the strong spatio-temporal nature of positioning, and the continuously evolving configuration of the networks. In this paper, we first show how to synthesize a detailed conceptual schema of cellular networks on the basis of the signal fingerprints collected by devices. We turned it into a logical one, and we exploited that to build a relational spatio-temporal database capable of supporting a crowdsourced collection of data. Next, we populated the database with heterogeneous cellular observations originating from multiple sources. In addition, we illustrate how the developed system allows us to properly deal with the evolution of the network configuration, e.g., by detecting cell renaming phenomena and by making it possible to correct inconsistent measurements coming from mobile devices, fostering positioning tasks. Finally, we provide a wide range of basic, spatial, and temporal analyses about the arrangement of the cellular network and its evolution over time, demonstrating how the developed system can be used to reconstruct and maintain a deep knowledge of the cellular network, possibly starting from crowdsourced information only

    Delivering IoT Services in Smart Cities and Environmental Monitoring through Collective Awareness, Mobile Crowdsensing and Open Data

    Get PDF
    The Internet of Things (IoT) is the paradigm that allows us to interact with the real world by means of networking-enabled devices and convert physical phenomena into valuable digital knowledge. Such a rapidly evolving field leveraged the explosion of a number of technologies, standards and platforms. Consequently, different IoT ecosystems behave as closed islands and do not interoperate with each other, thus the potential of the number of connected objects in the world is far from being totally unleashed. Typically, research efforts in tackling such challenge tend to propose a new IoT platforms or standards, however, such solutions find obstacles in keeping up the pace at which the field is evolving. Our work is different, in that it originates from the following observation: in use cases that depend on common phenomena such as Smart Cities or environmental monitoring a lot of useful data for applications is already in place somewhere or devices capable of collecting such data are already deployed. For such scenarios, we propose and study the use of Collective Awareness Paradigms (CAP), which offload data collection to a crowd of participants. We bring three main contributions: we study the feasibility of using Open Data coming from heterogeneous sources, focusing particularly on crowdsourced and user-contributed data that has the drawback of being incomplete and we then propose a State-of-the-Art algorith that automatically classifies raw crowdsourced sensor data; we design a data collection framework that uses Mobile Crowdsensing (MCS) and puts the participants and the stakeholders in a coordinated interaction together with a distributed data collection algorithm that prevents the users from collecting too much or too less data; (3) we design a Service Oriented Architecture that constitutes a unique interface to the raw data collected through CAPs through their aggregation into ad-hoc services, moreover, we provide a prototype implementation

    Systems and Methods for Measuring and Improving End-User Application Performance on Mobile Devices

    Full text link
    In today's rapidly growing smartphone society, the time users are spending on their smartphones is continuing to grow and mobile applications are becoming the primary medium for providing services and content to users. With such fast paced growth in smart-phone usage, cellular carriers and internet service providers continuously upgrade their infrastructure to the latest technologies and expand their capacities to improve the performance and reliability of their network and to satisfy exploding user demand for mobile data. On the other side of the spectrum, content providers and e-commerce companies adopt the latest protocols and techniques to provide smooth and feature-rich user experiences on their applications. To ensure a good quality of experience, monitoring how applications perform on users' devices is necessary. Often, network and content providers lack such visibility into the end-user application performance. In this dissertation, we demonstrate that having visibility into the end-user perceived performance, through system design for efficient and coordinated active and passive measurements of end-user application and network performance, is crucial for detecting, diagnosing, and addressing performance problems on mobile devices. My dissertation consists of three projects to support this statement. First, to provide such continuous monitoring on smartphones with constrained resources that operate in such a highly dynamic mobile environment, we devise efficient, adaptive, and coordinated systems, as a platform, for active and passive measurements of end-user performance. Second, using this platform and other passive data collection techniques, we conduct an in-depth user trial of mobile multipath to understand how Multipath TCP (MPTCP) performs in practice. Our measurement study reveals several limitations of MPTCP. Based on the insights gained from our measurement study, we propose two different schemes to address the identified limitations of MPTCP. Last, we show how to provide visibility into the end- user application performance for internet providers and in particular home WiFi routers by passively monitoring users' traffic and utilizing per-app models mapping various network quality of service (QoS) metrics to the application performance.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146014/1/ashnik_1.pd

    Cellular Network Traces Towards 5G: Usage, Analysis and Generation

    Get PDF
    Deployment and demand traces are a crucial tool to study today's LTE systems, as well as their evolution toward 5G. In this paper, we use a set of real-world, crowdsourced traces, coming from the WeFi and OpenSignal apps, to investigate how present-day networks are deployed, and the load they serve. Given this information, we present a way to generate synthetic deployment and demand profiles, retaining the same features of their real-world counterparts. We further discuss a methodology using traces (both real-world and synthetic) to assess (i) to which extent the current deployment is adequate to the current and future demand, and (ii) the effectiveness of the existing strategies to improve network capacity. Applying our methodology to real-world traces, we find that present-day LTE deployments consist of multiple, entangled, medium- to large-sized cells. Furthermore, although today's LTE networks are overprovisioned when compared to the present traffic demand, they will need substantial capacity improvements in order to face the load increase forecasted between now and 2020

    Not in My Neighborhood: A User Equipment Perspective of Cellular Planning Under Restrictive EMF Limits

    Get PDF
    The installation of base station (BS) sites is regulated by a variety of laws at international, national, and local levels. While international regulations are already severe, the national and local laws applied in many countries and regions follow precautionary principles and enforce electromagnetic field (EMF) constraints that are even more restrictive. This legal environment results in substantial constraints affecting the planning of cellular networks, as requests for new BS site installation are easily denied by national or local authorities. In this paper, we consider the problem of cellular planning under restrictive EMF limits from the user equipment (UE) viewpoint. We focus on outdoor urban areas and first evaluate the impact of the current, non-optimal network planning at the UE side through a quantitative measurement-driven analysis of the quality of service (QoS) observed by users in heterogeneous, large-scale urban scenarios. We then perform a qualitative assessment of the perceived QoS and generated EMF levels at one UE transferring data from/to a BS based on its position with respect to the serving BS. Finally, we run a what-if analysis by comparing the existing planning with the one where new BS sites can be installed, thanks to a relaxation of the restrictive EMF constraints. Our results clearly show that a cellular planning driven by restrictive EMF constraints forces UE to experience large distances from the serving BS, frequent non-line-of-sight conditions, and poor received signal. In turn, this entails a very negative combination of high electric field activity (EFA) levels generated by the UE and low QoS perceived by the user. We show that, by relaxing the restrictive EMF constraints, the problem could be sensibly mitigated with a positive impact on the UE channel conditions and consequently on the perceived QoS and the UE EFA
    • 

    corecore