4,227 research outputs found

    Correlation-aware packet scheduling in multi-camera networks

    Get PDF
    In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle properly this correlation during encoding and transmission of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion model that captures the importance of each view in the scene reconstruction. We propose a problem formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients. Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation information is used in the scheduler, compared to scheduling policies with no information about the correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon in the packet scheduling algorithm improves the transmission performance, especially in scenarios where the level of correlation rapidly varies with time. © 2013 IEEE

    Multi-View Video Packet Scheduling

    Full text link
    In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle properly this correlation during encoding and transmission of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion model that captures the importance of each view in the scene reconstruction. We propose a problem formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients. Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation information is used in the scheduler, compared to scheduling policies with no information about the correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon in the packet scheduling algorithm improves the transmission performance, especially in scenarios where the level of correlation rapidly varies with time

    Scheduling for Multi-Camera Surveillance in LTE Networks

    Full text link
    Wireless surveillance in cellular networks has become increasingly important, while commercial LTE surveillance cameras are also available nowadays. Nevertheless, most scheduling algorithms in the literature are throughput, fairness, or profit-based approaches, which are not suitable for wireless surveillance. In this paper, therefore, we explore the resource allocation problem for a multi-camera surveillance system in 3GPP Long Term Evolution (LTE) uplink (UL) networks. We minimize the number of allocated resource blocks (RBs) while guaranteeing the coverage requirement for surveillance systems in LTE UL networks. Specifically, we formulate the Camera Set Resource Allocation Problem (CSRAP) and prove that the problem is NP-Hard. We then propose an Integer Linear Programming formulation for general cases to find the optimal solution. Moreover, we present a baseline algorithm and devise an approximation algorithm to solve the problem. Simulation results based on a real surveillance map and synthetic datasets manifest that the number of allocated RBs can be effectively reduced compared to the existing approach for LTE networks.Comment: 9 pages, 10 figure

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Correlation-based communication in wireless multimedia sensor networks

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are networks of interconnected devices that allow retrieving video and audio streams, still images, and scalar data from the environment. In a densely deployed WMSN, there exists correlation among the observations of camera sensors with overlapped coverage areas, which introduces substantial data redundancy in the network. In this dissertation, efficient communication schemes are designed for WMSNs by leveraging the correlation of visual information observed by camera sensors. First, a spatial correlation model is developed to estimate the correlation of visual information and the joint entropy of multiple correlated camera sensors. The compression performance of correlated visual information is then studied. An entropy-based divergence measure is proposed to predict the compression efficiency of performing joint coding on the images from correlated cameras. Based on the predicted compression efficiency, a clustered coding technique is proposed that maximizes the overall compression gain of the visual information gathered in WMSNs. The correlation of visual information is then utilized to design a network scheduling scheme to maximize the lifetime of WMSNs. Furthermore, as many WMSN applications require QoS support, a correlation-aware QoS routing algorithm is introduced that can efficiently deliver visual information under QoS constraints. Evaluation results show that, by utilizing the correlation of visual information in the communication process, the energy efficiency and networking performance of WMSNs could be improved significantly.PhDCommittee Chair: Akyildiz, Ian; Committee Member: Ammar, Mostafa; Committee Member: Ji, Chuanyi; Committee Member: Li, Ye; Committee Member: Romberg, Justi

    Optimized Packet Scheduling in Multiview Video Navigation Systems

    Get PDF
    In multiview video systems, multiple cameras generally acquire the same scene from different perspectives, such that users have the possibility to select their preferred viewpoint. This results in large amounts of highly redundant data, which needs to be properly handled during encoding and transmission over resource-constrained channels. In this work, we study coding and transmission strategies in multicamera systems, where correlated sources send data through a bottleneck channel to a central server, which eventually transmits views to different interactive users. We propose a dynamic correlation-aware packet scheduling optimization under delay, bandwidth, and interactivity constraints. The optimization relies both on a novel rate-distortion model, which captures the importance of each view in the 3D scene reconstruction, and on an objective function that optimizes resources based on a client navigation model. The latter takes into account the distortion experienced by interactive clients as well as the distortion variations that might be observed by clients during multiview navigation. We solve the scheduling problem with a novel trellis-based solution, which permits to formally decompose the multivariate optimization problem thereby significantly reducing the computation complexity. Simulation results show the gain of the proposed algorithm compared to baseline scheduling policies. More in details, we show the gain offered by our dynamic scheduling policy compared to static camera allocation strategies and to schemes with constant coding strategies. Finally, we show that the best scheduling policy consistently adapts to the most likely user navigation path and that it minimizes distortion variations that can be very disturbing for users in traditional navigation systems

    Statistical priority-based uplink scheduling for M2M communications

    Get PDF
    Currently, the worldwide network is witnessing major efforts to transform it from being the Internet of humans only to becoming the Internet of Things (IoT). It is expected that Machine Type Communication Devices (MTCDs) will overwhelm the cellular networks with huge traffic of data that they collect from their environments to be sent to other remote MTCDs for processing thus forming what is known as Machine-to-Machine (M2M) communications. Long Term Evolution (LTE) and LTE-Advanced (LTE-A) appear as the best technology to support M2M communications due to their native IP support. LTE can provide high capacity, flexible radio resource allocation and scalability, which are the required pillars for supporting the expected large numbers of deployed MTCDs. Supporting M2M communications over LTE faces many challenges. These challenges include medium access control and the allocation of radio resources among MTCDs. The problem of radio resources allocation, or scheduling, originates from the nature of M2M traffic. This traffic consists of a large number of small data packets, with specific deadlines, generated by a potentially massive number of MTCDs. M2M traffic is therefore mostly in the uplink direction, i.e. from MTCDs to the base station (known as eNB in LTE terminology). These characteristics impose some design requirements on M2M scheduling techniques such as the need to use insufficient radio resources to transmit a huge amount of traffic within certain deadlines. This presents the main motivation behind this thesis work. In this thesis, we introduce a novel M2M scheduling scheme that utilizes what we term the “statistical priority” in determining the importance of information carried by data packets. Statistical priority is calculated based on the statistical features of the data such as value similarity, trend similarity and auto-correlation. These calculations are made and then reported by the MTCDs to the serving eNBs along with other reports such as channel state. Statistical priority is then used to assign priorities to data packets so that the scarce radio resources are allocated to the MTCDs that are sending statistically important information. This would help avoid exploiting limited radio resources to carry redundant or repetitive data which is a common situation in M2M communications. In order to validate our technique, we perform a simulation-based comparison among the main scheduling techniques and our proposed statistical priority-based scheduling technique. This comparison was conducted in a network that includes different types of MTCDs, such as environmental monitoring sensors, surveillance cameras and alarms. The results show that our proposed statistical priority-based scheduler outperforms the other schedulers in terms of having the least losses of alarm data packets and the highest rate in sending critical data packets that carry non-redundant information for both environmental monitoring and video traffic. This indicates that the proposed technique is the most efficient in the utilization of limited radio resources as compared to the other techniques
    corecore